Re: Minimize[] Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg76342] Re: Minimize[] Problem
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sun, 20 May 2007 02:24:43 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <f2mfj4$mh1$1@smc.vnet.net>
anguzman at ing.uchile.cl wrote: > Hello. > > Why do I get? > > In[4]:= > Minimize[(x^4-6 x^2+1)^2,{x}] > Out[4]= > {1,{x->0}} > > when.. > > In[3]:= > (x^4-6 x^2+1)^2/.x->1-Sqrt[2]//Simplify > Out[3]= > > > x=0 is actually a local maximum. > Any answer will be appreciated. > > Atte Andres Guzman I am afraid this may be a bug in version 5.2. Even with a constraint, Minimize is unable to find a minimum. In[1]:= $Version Out[1]= "5.2 for Microsoft Windows (June 20, 2005)" In[2]:= Minimize[(x^4 - 6*x^2 + 1)^2, {x}] Out[2]= {1, {x -> 0}} In[3]:= Simplify[Minimize[{(x^4 - 6*x^2 + 1)^2, x < 0}, {x}]] Minimize::wksol: Warning: There is no minimum in the region described by the constraints; returning a result on the boundary. More... Out[3]= {1, {x -> 0}} In[4]:= Chop[NMinimize[(x^4 - 6*x^2 + 1)^2, {x}]] Out[4]= {0, {x -> -0.41421356237309503}} In[5]:= Chop[N[Solve[(x^4 - 6*x^2 + 1)^2 == 0, x]]] Out[5]= {{x -> -2.414213562373095}, {x -> -2.414213562373095}, {x -> -0.41421356237309515}, {x -> -0.41421356237309515}, {x -> 0.41421356237309515}, {x -> 0.41421356237309515}, {x -> 2.414213562373095}, {x -> 2.414213562373095}} The behavior of Minimize is correct in version 6.0. In[1]:= $Version Out[1]= "6.0 for Microsoft Windows (32-bit) (April 28, 2007)" In[2]:= Minimize[(x^4 - 6*x^2 + 1)^2, {x}] Out[2]= {(1 - 6*(-1 - Sqrt[2])^2 + (-1 - Sqrt[2])^4)^2, {x -> -1 - Sqrt[2]}} In[3]:= Simplify[Minimize[(x^4 - 6*x^2 + 1)^2, {x}]] Out[3]= {0, {x -> -1 - Sqrt[2]}} In[4]:= Simplify[Minimize[{(x^4 - 6*x^2 + 1)^2, x > 0}, {x}]] Out[4]= {0, {x -> -1 + Sqrt[2]}} Regards, Jean-Marc