Re: Sierpinski's thing
- To: mathgroup at smc.vnet.net
- Subject: [mg76768] Re: [mg76685] Sierpinski's thing
- From: "Lev Bishop" <lev.bishop+mathgroup at gmail.com>
- Date: Sun, 27 May 2007 04:50:31 -0400 (EDT)
- References: <200705260818.EAA18247@smc.vnet.net>
On 5/26/07, Anolethron <abacus78685 at tin.it> wrote: > What I'm trying to do is basically constructing a Sierpinski's carpet with > an algorithm that can be generalized to the construction of a Menger Sponge. > sierp[p_, d_?(# > 1 &)] := {Rectangle[p + {d, d}/3, p + 2 {d, d}/3], sierp[p + d #/3, d/3] & /@ {{0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 2}, {2, 0}, {2, 1}, {2, 2}}}; sierp[p_, d_] := Rectangle[p + {d, d}/3, p + 2 {d, d}/3]; sierp[n_Integer] := Graphics[{White, sierp[{0, 0}, 3^n]}, Background -> Black]; and then you can do, eg: sierp[3] (* v6 *) or Show[sierp[3],AspectRatio->1] (*v5.2*)
- References:
- Sierpinski's thing
- From: "Anolethron" <abacus78685@tin.it>
- Sierpinski's thing