Re: Simplifying Log[a] + Log[expr_] - Log[2 expr_]: Brute force necessary?
- To: mathgroup at smc.vnet.net
- Subject: [mg81803] Re: Simplifying Log[a] + Log[expr_] - Log[2 expr_]: Brute force necessary?
- From: Peter Breitfeld <phbrf at t-online.de>
- Date: Wed, 3 Oct 2007 06:33:14 -0400 (EDT)
- References: <fdqclq$mmg$1@smc.vnet.net>
W. Craig Carter schrieb: > > Hello, > This works as I would hope it would: > > Simplify[Log[a^2] + Log[b^2] - Log[-2 b^2], > Assumptions -> Element[a, Reals] && Element[b, Reals]] > > It returns -Log[-2/a^2] > > However, something a little more complicated: > > Simplify[ > Log[4] - > - 2 Log[-2 ((R + x)^2 + y^2 + (z - zvar)^2)] > + 2 Log[(R + x)^2 + y^2 + (z - zvar)^2]), > Assumptions -> > {Element[zvar,Reals], Element[x,Reals],Element[y, Reals], Element[z, Reals}] > > doesn't simplify. I can't see a way to do this, but brute force. > > Any ideas? > Thanks, > > W. Craig Carter > You can use a rule to bring everything under one Log: LogZusammenRule={ n_. Log[a_]+m_. Log[b_]:>Log[a^n b^m], n_. Log[a_]-m_. Log[b_]:>Log[a^n/b^m], a_ Log[b_]:>Log[b^a] }; Then your expression ll= - 2 Log[-2 ((R + x)^2 + y^2 + (z - zvar)^2)] + 2 Log[(R + x)^2 + y^2 + (z - zvar)^2] will be reduced to Log[4]: ll/.LogZusammenRule =====> Log[4] Gruss Peter -- ==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-==-== Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de
- Follow-Ups:
- Re: Re: Re: Simplifying Log[a] + Log[expr_] -
- From: "W. Craig Carter" <ccarter@mit.edu>
- Re: Re: Simplifying Log[a] + Log[expr_] - Log[2 expr_]: Brute force necessary?
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Re: Simplifying Log[a] + Log[expr_] -