Strange result for a definite integral: Unknown Symbol (\.10) returned
- To: mathgroup at smc.vnet.net
- Subject: [mg81825] Strange result for a definite integral: Unknown Symbol (\.10) returned
- From: "W. Craig Carter" <ccarter at mit.edu>
- Date: Thu, 4 Oct 2007 04:26:18 -0400 (EDT)
Hello, I am getting a result that I can't understand. An unknown symbol "\.10" is appearing. InputForm[integrand] is (R*(R - x*Cos[t] - y*Sin[t]))/(3*(R^2 + x^2 + y^2 + (z - zeta)^2 - 2*R*(x*Cos[t] + y*Sin[t]))^3) InputForm{assumptions] is {R > 0, L > 0, Element[zeta, Reals], Element[x, Reals], Element[y, Reals], Element[z, Reals]} integral = Integrate[integrand,{t,0,2 Pi}, Assumptions->assumptions] returns (after a longish evaluation, about 20 minutes on my machine) InputForm[integral] is (2*\.10*R^2*(R^4 - 2*x^4 - 2*y^4 - y^2*z^2 + z^4 - x^2*(4*y^2 + (z - zeta)^2) + R^2*(x^2 + y^2 + 2*(z - zeta)^2) + 2*y^2*z*zeta - 4*z^3*zeta - y^2*zeta^2 + 6*z^2*zeta^2 - 4*z*zeta^3 + zeta^4)* (Log[(-2*(R^2 + 2*R*x + x^2 + y^2 + z^2 - 2*z*zeta + zeta^2))/Sqrt[-R^4 + 2*R^2*(x^2 + y^2 - (z - zeta)^2) - (x^2 + y^2 + (z - zeta)^2)^2]] - Log[(2*(R^2 + 2*R*x + x^2 + y^2 + z^2 - 2*z*zeta + zeta^2))/ Sqrt[-R^4 + 2*R^2*(x^2 + y^2 - (z - zeta)^2) - (x^2 + y^2 + (z - zeta)^2)^2]]))/ (3*(-R^4 + 2*R^2*(x^2 + y^2 - (z - zeta)^2) - (x^2 + y^2 + (z - zeta)^2)^2)^(5/2)) (The \.10 appears as a little space, subsequent operations give me a tiny little space to a power) FullForm[integral] returns Times[Rational[2, 3], \.10, .... What is the symbol \.10 doing in there? What is it? I am using the 64-bit kernel on a macintosh intel chip dual core machine. Math 6.01 Thanks, Craig
- Follow-Ups:
- Re: Strange result for a definite integral: Unknown Symbol
- From: "W. Craig Carter" <ccarter@mit.edu>
- Re: Strange result for a definite integral: Unknown Symbol