Re: Applying Math 6
- To: mathgroup at smc.vnet.net
- Subject: [mg82338] Re: Applying Math 6
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 18 Oct 2007 04:46:25 -0400 (EDT)
- References: <ff4etv$dcu$1@smc.vnet.net>
Hi, model[x_, a_, bc_, be_, d_, f_] := Exp[-(a*Log[x])/bc]^d + Exp[-a*Log[x]/be]^f make some test data With[{f = 1.5, d = 1.33, a = 1, bc = 2, be = 2.1}, data = Table[{x, model[x, a, bc, be, d, f] + RandomReal[{-0.01, 0.01}]}, {x, 0.0001, 10, 0.01}]; ] fit the data fit = FindFit[data , model[x, a, bc, be, d, f], {a, bc, be, d, f}, x] and draw the result Plot[ model[x, a, bc, be, d, f] /. fit, {x, 0.001, 10}, Frame -> True, Epilog -> {Point[data]}] Regards Jens Johan Mars wrote: > Dear Users, > I need to fit x-y data to the equation below and also need to determine > the derivative. > Please help. > > y=exp[-(a*ln(x))/bc]^d + exp[-(a*ln(x)/be]^f > > This equation is used in adsorption studies and is normally referred to > as the Dubinin-Izotova equation. > > > > Sincere regards > > Dr. Johan Mars > Environmental Awareness Tel.: +27 21 9593050 > Department of Chemistry Fax.: +27 21 9593055 > University of the Western Cape Cell.:+27 72 5043585 > Private Bag X17 > Bellville, 7535 > South Africa > http://www.uwc.ac.za >