Re: Problem in Solving Double Integral for PDF transformation
- To: mathgroup at smc.vnet.net
- Subject: [mg80963] Re: Problem in Solving Double Integral for PDF transformation
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet at gmail.com>
- Date: Thu, 6 Sep 2007 05:32:34 -0400 (EDT)
- References: <fblj6o$pam$1@smc.vnet.net> <46DE84B3.3010203@gmail.com>
[See answer at the bottom of the message crossposted to MathGroup.] Negede Abate wrote: > Dear Jran-Marc, > > Thanks for the help. It seems it might work. But, how can get the > PiecewiseIntegrate in Mathematica. It is not a built-in function. > > Thanks in advance. > > Negede > > > > On 9/5/07, Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com> wrote: > > Negede Abate wrote: > > > > > Could any one kindly help me solve the following Integral using > Mathematica? > > > I tried the Integrate command in different forms but I failed to > succeed. I > > > really got staked. > > > * > > > > > > f1 = 1/(3*E^((-42.13+t2)^2/18)*Sqrt[2*Pi]); > > > > > > f2= (5.778367760333042* > ^-19*(11.12+t3)^12.13)/E^(4.4008893833458054*^-20*( > > > 11.12+t3)^13.13); > > > > > > f3 = Abs[Cot[0.017453292519943295*t2]]; > > > > > > f4=0.0037739313253375532/E^(0.000044744314476429635*( > > > 449.96310600570723-55.69524532558123*t3+1.*t*Cot > [0.017453292519943295*t > > > 2])^2); > > > > > > f5= > (7.133612341840616*^-13*(-18.963106005707232+55.69524532558123*t3-1.*t > > > *Cot[0.017453292519943295*t2])^3.8)/E^(1.4861692378834617*^-13*(- > > > 18.963106005707232+55.69524532558123*t3-1.*t*Cot > [0.017453292519943295*t2])^ > > > 4.8); > > > > > > Int1=f1 f2 f3 f4 //FullSimplify//InputForm > > > * > > > > > > 2.899933125405506*^-22* > > > > > > E^(-0.05555555555555555*(-42.13 + t2)^2 - > > > > > > 4.4008893833458054*^-20*(11.12 + t3)^13.13 - > > > > > > 0.000044744314476429635*(449.96310600570723 - > > > > > > 55.69524532558123*t3 + > > > > > > 1.*t*Cot[0.017453292519943295*t2])^2)* > > > > > > (11.12 + t3)^12.13* > > > > > > Abs[Cot[0.017453292519943295*t2]] > > > * > > > > > > Int2=f1 f2 f3 f5 //FullSimplify//InputForm > > > * > > > > > > 5.481551451404547*^-32* > > > > > > E^(-0.05555555555555555* (-42.13 + t2)^2 - > > > > > > 4.4008893833458054*^-20*(11.12 + t3)^13.13 - > > > > > > 1.4861692378834617*^-13*(-18.963106005707232 + > > > > > > 55.69524532558123*t3 - > > > > > > 1.*t*Cot[0.017453292519943295*t2 ])^4.8)* > > > > > > (11.12 + t3)^12.13* > > > > > > Abs[Cot[0.017453292519943295*t2]]* > > > > > > (-18.963106005707232 + 55.69524532558123*t3 - > > > > > > 1.*t*Cot[0.017453292519943295*t2])^3.8 > > > * > > > > > > Integrate[Int1,{t2,35,50},{t3,10,23}] > > > > > > Integrate[Int2,{t2,35,50},{t3,10,23}] > > > > Glancing at your integrands, I have noticed that they contain piecewise > > functions such as Abs. In this case, it may be worthwhile to try Maxim > > Rytin's "Integration of Piecewise Functions with Applications" package > > available at > > > > http://library.wolfram.com/infocenter/MathSource/5117/ > > > > (Especially, you should check the function *PiecewiseIntegrate*.) > > > > From the notebook piecewise.nb, we can read, > > > > > "PiecewiseIntegrate[f,{x,xmin,xmax},{y,ymin,ymax},\[Ellipsis]] > gives the > > definite integral of function f. It is intended for integrating > > piecewise continuous functions, and also generalized functions. It > > handles integrands and integration bounds involving the following > > expressions: > > > > . UnitStep, Sign, Abs, Min, Max > > . Floor, Ceiling, Round, IntegerPart, FractionalPart, Quotient, Mod > > . DiracDelta and its derivatives, DiscreteDelta, KroneckerDelta > > . If, Which, Element, NotElement > > . Piecewise, Boole, Clip" If what you want is just to experiment with PiecewiseExpand during a Mathematica session, the easiest way should be, first, to open Maxim Rytin's notebook in Mathematica (if you are using Mathematica version 6, do not scan for possible issues: the core functions work fine with it; however some of the example might use some deprecated packages), then evaluate the initialization cells (menu Evaluation -> Evaluate Initialization Cells in v6 or menu Kernel -> Evaluate -> Evaluate Initialization in v5). Now, you can use the function PiecewiseExpand from any notebook as long as you are using the same kernel. If you want to create a package and install it, follow the directions given at the beginning of the section titled "Implementation" to create a package. Also, check the online help of your Mathematica version to see how to install and use external packages (add-ons). -- Jean-Marc