Re: transformation rule (some
- To: mathgroup at smc.vnet.net
- Subject: [mg87781] Re: transformation rule (some
- From: UHAP023 at alpha1.rhbnc.ac.uk
- Date: Wed, 16 Apr 2008 22:32:52 -0400 (EDT)
- Organization: Low Temperature Physics, RHUL
- References: <ftq5ab$it$1@smc.vnet.net> <ftscv1$b81$1@smc.vnet.net> <ftv91s$7ur$1@smc.vnet.net> <200804150954.FAA25209@smc.vnet.net> <fu4fi0$ngj$1@smc.vnet.net>
Daniel Lichtblau <danl at wolfram.com> wrote: [cut] : If you are not averse to using a global flag variable, you can do it as : follows. : Unprotect[Integrate]; : globalIntegrateFlag = True; : Integrate[args__] := Block[ : {globalIntegrateFlag=False, res}, : res = Integrate[args]; : If [FreeQ[res,EllipticF], res, HoldForm[Integrate[args]]] : ] /; globalIntegrateFlag===True : Examples: : In[7]:= InputForm[Integrate[1/Sqrt[1 - m*Sin[phi]^2], phi]] : Out[7]//InputForm= HoldForm[Integrate[1/Sqrt[1 - m*Sin[phi]^2], phi]] : In[8]:= Integrate[1/Sqrt[1 - phi^2], phi] : Out[8]= ArcSin[phi] Many thanks. This is what I was after. Cheers Tom. Ps. The Email address in the header is just a spam-trap. -- Tom Crane, Dept. Physics, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, England. Email: T.Crane at rhul dot ac dot uk Fax: +44 (0) 1784 472794
- References:
- Re: Deleting Integrate[] transformation rule (some progress)
- From: UHAP023@alpha1.rhbnc.ac.uk
- Re: Deleting Integrate[] transformation rule (some progress)