Re: Fourier Trasform of a Bessel Function
- To: mathgroup at smc.vnet.net
- Subject: [mg87814] Re: Fourier Trasform of a Bessel Function
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Fri, 18 Apr 2008 02:36:53 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <fu6mij$nno$1@smc.vnet.net>
Vladislav wrote: > I try to make the following > >> FourierTransform[BesselJ[n, x], x, w]; >> % /. n -> 0 > > I try >> FourierTransform[BesselJ[0, x], x, w] > I obtain another result. Why? Vladislav, The issue is that, by default, FourierTransform[] does not generate/check any conditions on the parameters and thus returns the most general case. So, your first expression returns zero for n == 0, which is true for any w > 1 or w < -1. However, for -1 < w < 1 the true value is not zero (see below). And of course the expression is not defined for w == 1 or w == -1. You can force FourierTransform[] to generate conditions and also put some constraints on the parameters thanks to the options GenerateConditions -> True and Assumptions, perspectively. In[1]:= expr = FourierTransform[BesselJ[0, x], x, w] Out[1]= (Sqrt[2/\[Pi]] (-HeavisideTheta[-1 + w] + HeavisideTheta[1 + w]))/Sqrt[1 - w^2] In[2]:= FullSimplify[expr, Assumptions -> w > 1] Out[2]= 0 In[3]:= FullSimplify[expr, Assumptions -> w < -1] Out[3]= 0 In[4]:= FullSimplify[expr, Assumptions -> -1 < w < 1] Out[4]= Sqrt[2]/Sqrt[\[Pi] - \[Pi] w^2] In[5]:= Plot[(-HeavisideTheta[-1 + w] + HeavisideTheta[1 + w]), {w, -5, 5}] Plot[expr, {w, -5, 5}] In[7]:= FourierTransform[BesselJ[n, x], x, w, GenerateConditions -> True] Out[7]= If[w^2 > 1 && Re[n] > -1, ( E^((I n \[Pi])/ 2) (-w + Abs[w]) (Sqrt[-1 + w^2] + Abs[w])^-n Sin[n \[Pi]])/( Sqrt[2 \[Pi]] w Sqrt[-1 + w^2]), FourierTransform[BesselJ[n, x], x, w, GenerateConditions -> True]] In[8]:= % /. n -> 0 Out[8]= If[w^2 > 1, ( E^((I 0 \[Pi])/ 2) (-w + Abs[w]) (Sqrt[-1 + w^2] + Abs[w])^-0 Sin[0 \[Pi]])/( Sqrt[2 \[Pi]] w Sqrt[-1 + w^2]), FourierTransform[BesselJ[0, x], x, w, GenerateConditions -> True]] In[9]:= % // Simplify Out[9]= \[Piecewise] { {((Sqrt[2/\[Pi]] (-HeavisideTheta[-1 + w] + HeavisideTheta[1 + w]))/ Sqrt[1 - w^2]), -1 <= w <= 1} } Regards, -- Jean-Marc