Re: Quantile and InverseCDF
- To: mathgroup at smc.vnet.net
- Subject: [mg87875] Re: [mg87819] Quantile and InverseCDF
- From: Darren Glosemeyer <darreng at wolfram.com>
- Date: Sat, 19 Apr 2008 03:33:57 -0400 (EDT)
- References: <200804180637.CAA12464@smc.vnet.net>
Peter Breitfeld wrote: > (* Version 6.0.2 for Mac PPC *) > > I thick I am missing something obvious: > > The documentation for InverseCDF says: > > "For a discrete Distribution dist the inverse CDF at q ist the largest > integer x such CDF[dist,x]<=q. > > But I get > > binom=BinomialDistribution[20,0.3] > > InverseCDF[binom,0.5] ---> 6 > Quantile[binom,0.6] ---> 6 > > CDF[binom,7] ---> 0.772... > CDF[binom,6] ---> 0.608... > CDF[binom,5] ---> 0.416... > > so the quantile ist the smallest integer such CDF[dist,x]>=q ?? > > > Gruss Peter > Thanks for pointing this out so we can correct the documentation. You are right that the statement should be that it is the smallest integer such that CDF[dist, x]>=q. Darren Glosemeyer Wolfram Research
- References:
- Quantile and InverseCDF
- From: Peter Breitfeld <phbrf@t-online.de>
- Quantile and InverseCDF