Re: Sorting 3 points
- To: mathgroup at smc.vnet.net
- Subject: [mg87968] Re: [mg87935] Sorting 3 points
- From: "Adriano Pascoletti" <adriano.pascoletti at gmail.com>
- Date: Mon, 21 Apr 2008 06:37:55 -0400 (EDT)
- References: <200804210721.DAA18821@smc.vnet.net>
Three possible solutions: In[1]:= Reverse[SortBy[{{2, 3, 1}, {3, 5, 8}, {5, 1, 6}}, Last]] Out[1]= {{3, 5, 8}, {5, 1, 6}, {2, 3, 1}} In[2]:= SortBy[{{2, 3, 1}, {3, 5, 8}, {5, 1, 6}}, Last[-#1] & ] Out[2]= {{3, 5, 8}, {5, 1, 6}, {2, 3, 1}} In[3]:= Sort[{{2, 3, 1}, {3, 5, 8}, {5, 1, 6}}, #1[[3]] > #2[[3]] & ] Out[3]= {{3, 5, 8}, {5, 1, 6}, {2, 3, 1}} Adriano Pascoletti On Mon, Apr 21, 2008 at 9:21 AM, <carlos at colorado.edu> wrote: > Simple question, but documentation is no help. > I have three coordinate triplets: > > P1={x1,y1,z1} P2={x2,y2,z2} P3={x3,y3,z3} > > where all entries are numeric. I wont to sort them into > > P1s={xs1,ys1,zs1} P2s={xs2,ys2,zs2} P3s={xs3,ys3,zs3} > > so that zs3>=zs2>=zs1, with one command > > {P1s,P2s,P3s}=Sort[{P1,P2,P3}, Ordering Function] > > Is that possible and if so, which Ordering Function > should be used? Thanks. > >
- References:
- Sorting 3 points
- From: carlos@Colorado.EDU
- Sorting 3 points