Re: Integral of radial solution (hydrogen atom) is not evaluated
- To: mathgroup at smc.vnet.net
- Subject: [mg91475] Re: Integral of radial solution (hydrogen atom) is not evaluated
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Sat, 23 Aug 2008 01:41:18 -0400 (EDT)
- Organization: Uni Leipzig
- References: <g8lp87$ih2$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, even if you would do it by hand, you have to substitute 2*r/n in the arguments to use the orthogonality relation and Mathematica can't evaluate Integrate[ LaguerreL[n1, l1, r]*LaguerreL[n2, l2, r]*Exp[-r], {r, 0, Infinity}] or Integrate[ LaguerreL[n, l, r]*LaguerreL[n, l, r]*Exp[-r], {r, 0, Infinity}] so you have to use you head to solve the integral or define the corresponding integration rules. Regards Jens Gehricht at googlemail.com wrote: > Hi! > > I want to integrate the radial solution of the hydrogen atom from zero > to infinity. The following code (for the corresponding cell > expression, see below) just returns an unevaluated integral: > > In:: R=r^l*Exp[-(r/n)]*(2/n)^l*2/n^2*Sqrt[(n-l-1)!/(n+l)!]*LaguerreL[n- > l-1,2*l+1,(2*r)/n] > Assuming[{Element[n,Integers],Element[l,Integers],n>0,n>l>=0},integrand=FullSimplify[(R*r)^2];Simplify[Integrate[integrand, > {r,0,\[Infinity]}]]] > > Out:: > \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(\[Infinity]\)]\( > FractionBox[\( > \*SuperscriptBox[\(4\), \(1 + l\)]\ > \*SuperscriptBox[\(E\), \(- > \*FractionBox[\(2\ r\), \(n\)]\)]\ > \*SuperscriptBox[\(n\), \(\(-2\)\ \((2 + l)\)\)]\ > \*SuperscriptBox[\(r\), \(2 + 2\ l\)]\ Gamma[\(-l\) + n]\ > \*SuperscriptBox[\(LaguerreL[\(-1\) - l + n, 1 + 2\ l, > \*FractionBox[\(2\ r\), \(n\)]]\), \(2\)]\), \(\((l + > n)\)!\)] \[DifferentialD]r\)\) > > I do not know, why the integral is left unevaluated and what I am > doing wrong respectively. Any help appreciated. > With thanks > Yours Wolfgang > --- > Cell[BoxData[{ > RowBox[{"R", "=", > RowBox[{ > SuperscriptBox["r", "l"], "*", > RowBox[{"Exp", "[", > RowBox[{"-", > FractionBox["r", "n"]}], "]"}], "*", > SuperscriptBox[ > RowBox[{"(", > FractionBox["2", "n"], ")"}], "l"], "*", > FractionBox["2", > SuperscriptBox["n", "2"]], "*", > SqrtBox[ > FractionBox[ > RowBox[{ > RowBox[{"(", > RowBox[{"n", "-", "l", "-", "1"}], ")"}], "!"}], > RowBox[{ > RowBox[{"(", > RowBox[{"n", "+", "l"}], ")"}], "!"}]]], "*", > RowBox[{"LaguerreL", "[", > RowBox[{ > RowBox[{"n", "-", "l", "-", "1"}], ",", > RowBox[{ > RowBox[{"2", "*", "l"}], "+", "1"}], ",", > FractionBox[ > RowBox[{"2", "*", "r"}], "n"]}], > "]"}]}]}], "\[IndentingNewLine]", > RowBox[{"Assuming", "[", > RowBox[{ > RowBox[{"{", > RowBox[{ > RowBox[{"Element", "[", > RowBox[{"n", ",", "Integers"}], "]"}], ",", > RowBox[{"Element", "[", > RowBox[{"l", ",", "Integers"}], "]"}], ",", > RowBox[{"n", ">", "0"}], ",", > RowBox[{"n", ">", "l", "\[GreaterEqual]", "0"}]}], "}"}], ",", > RowBox[{ > RowBox[{"integrand", "=", > RowBox[{"FullSimplify", "[", > SuperscriptBox[ > RowBox[{"(", > RowBox[{"R", "*", "r"}], ")"}], "2"], "]"}]}], ";", > RowBox[{"Simplify", "[", > RowBox[{"Integrate", "[", > RowBox[{"integrand", ",", > RowBox[{"{", > RowBox[{"r", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}], > "]"}]}]}], "]"}]}], "Input", > CellChangeTimes->{{3.427632357819639*^9, 3.427632377400957*^9}, { > 3.427632644205412*^9, 3.427632664272697*^9}, > 3.4282990139911003`*^9, {3.428323376643766*^9, > 3.428323506586858*^9}, {3.42832353786147*^9, > 3.428323548325508*^9}, {3.428324884676128*^9, > 3.428324891782604*^9}}] > >