Re: functions: compiled vs. uncompiled version
- To: mathgroup at smc.vnet.net
- Subject: [mg94114] Re: [mg94089] functions: compiled vs. uncompiled version
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Fri, 5 Dec 2008 05:30:55 -0500 (EST)
- References: <200812041217.HAA27808@smc.vnet.net>
Diego Guadagnoli wrote: > Hi All, > > I am performing mathematica calculations involving > many nested sums of the kind > FUN = Sum[term[i,j,k], {i,6},{j,6},{k,2} ] or similar, > where term[__] returns a complex number. > > Since I have many those sums, Timing is really long. > Therefore I thought to implement both term[__] and FUN > as compiled functions. I noticed however than in both > cases Timing is not improved, actually it is worse in the > compiled version. > > An example of the code is reported below as plain text. > There are a "Needed input" and a "Functions" part. In "Functions", > an example of term[__] is provided by the VUUS function, which is > implemented in uncompiled (VUUS[i_, j_, k_]) and compiled form (VUUSc). > This function is then called in the repeated sum "fun" (uncompiled) or > respectively "func" (compiled). > > As you can see, the Timing in func is actually worse than in fun. > > Any suggestion for improving my code without translating it in FORTRAN > would be very appreciated. > > Cheers, > D > > > %%%%%Please copy the content below to a mathematica notebook > > (*NEEDED INPUT*) > > BR[i_] := v[1] ZR[[1, i]] - v[2] ZR[[2, i]]; > > {g1, sW, v[1], v[2], yuRos[1], yuRos[2], yuRos[3]} = > Table[Random[], {i, 7}]; > > AuRos = Table[RandomComplex[], {i, 3}, {j, 3}]; > > ZR = Table[Random[], {i, 2}, {j, 2}]; > > ZU = Table[RandomComplex[], {i, 6}, {j, 6}]; > > \[Mu]Ros = 300; > > > > (*FUNCTIONS*) > > VUUS[i_, j_, > k_] := -(g1^2/3)*BR[k] (KroneckerDelta[i, j] + (3 - 8 sW^2)/(4 sW^2) > Sum[Conjugate[ZU[[I, i]]] ZU[[I, j]], {I, 1, 3}]) - > Sum[v[2] (yuRos[I])^2 > ZR[[2, k]] (Conjugate[ZU[[I, i]]] ZU[[I, j]] + > Conjugate[ZU[[I + 3, i]]] ZU[[I + 3, j]]), {I, 1, 3}] + > Sum[1/Sqrt[2] > ZR[[2, k]] (Conjugate[AuRos[[I, J]]] Conjugate[ZU[[I, i]]] > ZU[[J + 3, j]] + > AuRos[[I, J]] ZU[[I, j]] Conjugate[ZU[[J + 3, i]]]), {I, 1, > 3}, {J, 1, 3}] + > Sum[1/Sqrt[2] yuRos[I] > ZR[[1, k]] (Conjugate[\[Mu]Ros] ZU[[I, j]] > Conjugate[ZU[[I + 3, i]]] + \[Mu]Ros Conjugate[ZU[[I, i]]] > ZU[[I + 3, j]]), {I, 1, 3}]; > > VUUSc = Compile[{{i, _Integer}, {j, _Integer}, {k, _Integer}}, > sum1 = 0. + 0. I; > Do[sum1 = sum1 + Conjugate[ZU[[ii, i]]] ZU[[ii, j]], {ii, 1, 3}]; > sum2 = 0. + 0. I; > Do[sum2 = > sum2 + v[2] (yuRos[ii])^2 > ZR[[2, k]] (Conjugate[ZU[[ii, i]]] ZU[[ii, j]] + > Conjugate[ZU[[ii + 3, i]]] ZU[[ii + 3, j]]), {ii, 1, 3}]; > sum3 = 0. + 0. I; > Do[sum3 = > sum3 + 1/Sqrt[2] > ZR[[2, k]] (Conjugate[AuRos[[ii, J]]] Conjugate[ZU[[ii, i]]] > ZU[[J + 3, j]] + > AuRos[[ii, J]] ZU[[ii, j]] Conjugate[ZU[[J + 3, i]]]), {ii, > 1, 3}, {J, 1, 3}]; > sum4 = 0. + 0. I; > Do[sum4 = > sum4 + 1/Sqrt[2] yuRos[ii] > ZR[[1, k]] (Conjugate[\[Mu]Ros] ZU[[ii, j]] > Conjugate[ZU[[ii + 3, i]]] + \[Mu]Ros Conjugate[ > ZU[[ii, i]]] ZU[[ii + 3, j]]), {ii, 1, 3}]; > -(g1^2/3) > BR[k] (KroneckerDelta[i, j] + (3 - 8 sW^2)/(4 sW^2) sum1) - > sum2 + sum3 + sum4, > {{BR[_], _Real}, {ZU, _Complex, > 6}, {v[_], _Real}, {yuRos[_], _Real}, {ZR, _Real, > 2}, {AuRos, _Complex, 3}, {\[Mu]Ros, _Complex}}]; > > fun = Compile[{{k, _Integer}}, > sum1 = 0. + 0. I; > Do[sum1 = sum1 + VUUS[l, m, k], {l, 1, 6}, {m, 1, 6}]; > -sum1, {{VUUS[__], _Complex}} > ]; > > func = Compile[{{k, _Integer}}, > sum1 = 0. + 0. I; > Do[sum1 = sum1 + VUUSc[l, m, k], {l, 1, 6}, {m, 1, 6}]; > -sum1, {{VUUS[__], _Complex}} > ]; > > VUUS[1, 1, 1] // Timing > > VUUSc[1, 1, 1] // Timing > > fun[1] // Timing > > func[1] // Timing Making this fast is indeed a bit tricky. First thing to realize is if VUUSc[[4]] shows function evaluations, you'll have trouble. I changed slightly your definitions so that I could use vectors rather than indexed symbols (things like vvec[[j]] rather than v[j]). I'm not sure this was really necessary. Anyway, here is what I use. BR[i_] := v[1] ZR[[1, i]] - v[2] ZR[[2, i]]; {g1, sW, v[1], v[2], yuRos[1], yuRos[2], yuRos[3]} = Table[Random[], {i, 7}]; yuRosvec = {yuRos[1], yuRos[2], yuRos[3]}; vvec = {v[1], v[2]}; AuRos = Table[RandomComplex[], {i, 3}, {j, 3}]; ZR = Table[Random[], {i, 2}, {j, 2}]; ZU = Table[RandomComplex[], {i, 6}, {j, 6}]; \[Mu]Ros = 300; In order to get a good compiled version, we now insert that actual arrays into the Compile. This can be done using With, as below. VUUSc = With[{ZU = ZU, ZR = ZR, yuRosvec = yuRosvec, AuRos = AuRos, g1 = g1, sW = sW, vvec = vvec, \[Mu]Ros = \[Mu]Ros}, Compile[{{i, _Integer}, {j, _Integer}, {k, _Integer}}, Module[{sum1, sum2, sum3, sum4}, sum1 = 0. + 0. I; Do[sum1 = sum1 + Conjugate[ZU[[ii, i]]] ZU[[ii, j]], {ii, 1, 3}]; sum2 = 0. + 0. I; Do[sum2 = sum2 + Evaluate[ vvec[[2]]] (yuRosvec[[ii]])^2 ZR[[2, k]] (Conjugate[ZU[[ii, i]]] ZU[[ii, j]] + Conjugate[ZU[[ii + 3, i]]] ZU[[ii + 3, j]]), {ii, 1, 3}]; sum3 = 0. + 0. I; Do[sum3 = sum3 + 1/ Sqrt[2] ZR[[2, k]] (Conjugate[AuRos[[ii, J]]] Conjugate[ ZU[[ii, i]]] ZU[[J + 3, j]] + AuRos[[ii, J]] ZU[[ii, j]] Conjugate[ZU[[J + 3, i]]]), {ii, 1, 3}, {J, 1, 3}]; sum4 = 0. + 0. I; Do[sum4 = sum4 + 1/ Sqrt[2] yuRosvec[[ii]] ZR[[1, k]] (Conjugate[\[Mu]Ros] ZU[[ii, j]] Conjugate[ ZU[[ii + 3, i]]] + \[Mu]Ros Conjugate[ ZU[[ii, i]]] ZU[[ii + 3, j]]), {ii, 1, 3}]; -(g1^2/3) Evaluate[ BR[k] ] (If[i == j, 1, 0] + (3 - 8 sW^2)/(4 sW^2) sum1) - sum2 + sum3 + sum4], {{BR[_], _Real}}]]; Finally we fix func so that it declares VUUSc rather than VUUS as it's complex evaluated function (took me quite a while to see this was one of the problems). func = Compile[{{k, _Integer}}, -Total[ Flatten[Table[ VUUSc[l, m, k], {l, 1, 6}, {m, 1, 6}]]], {{VUUSc[__], _Complex}}]; Now compare results in speed. In[223]:= fun[1] // Timing Out[223]= {0.013998, -4438.04 + 2.13163*10^-14 I} In[224]:= func[1] // Timing Out[224]= {0.002, -4438.04 + 2.13163*10^-14 I} In[229]:= Do[fun[1], {100}] // Timing Out[229]= {1.10383, Null} In[230]:= Do[func[1], {100}] // Timing Out[230]= {0.155976, Null} Daniel Lichtblau Wolfram Research
- References:
- functions: compiled vs. uncompiled version
- From: Diego Guadagnoli <diego.guadagnoli@ph.tum.de>
- functions: compiled vs. uncompiled version