Re: Beta[x,a,b]: how to get around bug
- To: mathgroup at smc.vnet.net
- Subject: [mg94423] Re: Beta[x,a,b]: how to get around bug
- From: dimitris <dimmechan at yahoo.com>
- Date: Fri, 12 Dec 2008 06:57:19 -0500 (EST)
- References: <ghqjrv$11e$1@smc.vnet.net>
On 11 =C4=E5=EA, 10:43, "g... at iap.fr" <g... at iap.fr> wrote: > I've encountered a bug with the incomplete Beta function (both > versions 6.0 and 7.0), which I just submitted to support.wolfram.com. > > Beta[-1.7, 1.39646, -0.37188] > returns 0. + 0. i > > however > > Beta[N[-17/10, 10], N[139646/100000, 10], N[-37188/100000, 10]= ] > provides the correct answer: -0.20657 - 0.6125 i > > There is a relation between Beta[z,a,b] and Hypergeometric functions > Beta[z,a,b] = z^a/a Hypergeometric2F1[a,1-b,a+1,z] = z^a/a > Hypergeometric1F1[1-b,a+1,z]. > > If I estimate Hypergeometric2F1[a,1-b,a+1,z] for my values of z=-1.7, > a=1.39646, b=-0.37188, I get > Hypergeometric2F1[1.39646, 1.37188, 2.39646, -1.7] > returns 0 > > However, if I use Hypergeometric1F1[1-b,a+1,z]: > Hypergeometric1F1[1.37188, 2.39646, -1.7] > this returns a plausible value of 0.420134 > > So I believe that Beta and Hypergeometric2F1 are bugged, but not > Hypergeometric1F1. I don't think this is a bug. You have entered Mathematica's arithmetic world! In[77]:= Rationalize /@ {-1.7, 1.39646, -0.37188} (N[#1, 100] & )[Beta[Sequence @@ %]] Out[77]= {-(17/10), 69823/50000, -(9297/25000)} Out[78]= -0.206565532195211828488245686509461713110661823003533791150338364094234323= 8445737049165731802724786248249403389045196`99.655087\ 24163801 - 0.6124813174705197196509036033954859795594341071520172702600419005284902885= 805220759649991747874535605198632071032405`100.1271\ 2223132085*I When you enter real numbers by hand Mathematica assumes that they are known within MachinePrecision In[79]:= Precision /@ {-1.7, 1.39646, -0.37188} Out[79]= {MachinePrecision, MachinePrecision, MachinePrecision} In[80]:= $MachinePrecision Out[80]= 15.9546 It is obvious that this number of precision cannot be used in order to evaluate your Betta function. Another way to work is, as follows, e.g. In[94]:= (SetPrecision[#1, 10] & ) /@ {-1.7, 1.39646, -0.37188} Beta[Sequence @@ %] Out[94]= {-1.699999999999999955591079015`9.999999999999998, 1.3964600000000000346034312315`9.999999999999998, -0.3718799999999999883470991335`10.} Out[95]= -0.2065655321737375277`4.417380954358203 - 0.6124813174068471289`4.417393963471557*I Dimitris