Re: D
- To: mathgroup at smc.vnet.net
- Subject: [mg94553] Re: D
- From: dh <dh at metrohm.com>
- Date: Tue, 16 Dec 2008 02:34:08 -0500 (EST)
- References: <ghtjb8$r6c$1@smc.vnet.net>
Hi Cetin, try not to overload your question with insignificant details. The epsj are unimportant for the derivatives, I do not write them. Further, I give the principle for only 2 functions and variables, otherwise it will be a mess to check if everything is correct. We want the Jacobian of f1[y1,y2] and f2[y1,y2]. This is sort of an outer product between fi and derivative in direction yj: funs={f1,f2}; vars={y1,y2} Outer[D[#1@@vars,#2]&,funs,vars] For many dimensions it mqay be profitable to generalise this further. If we denote the functions f1,.. by f[1],.. and the variables y1,.. by y[1] we can write: funs=Array[f,2]; vars=Array[y,2]; Outer[D[#1@@vars,#2]&,funs,vars] For 21 dimensions, you simply have to reaplce 2 by 21. hope thsi helps, Daniel Cetin Haftaoglu wrote: > Dear mathematica users, > > > > I have a to evaluate the Jacobian matrix from a vector of function fi, > i=1,21 with the inner variables yi, i=1, 21 and epsj j=1,6. > > So I have to evaluate D[f_i [yi,epsj] , y_j], i= 1, 21, j=1, 21. How can I > write this expression in a short form, without to say that the functions f_i > depent on the inner > variables yi. When I write D[f_i,yi] I receive 0 because mathematica thinks > that I want derive a Constant. When I say > > > > D[f_i[y1,y2,y3,=85.,y21,eps1,=85eps6],y_j] ], i= 1, 21, j=1, 21 > > > > I get the right expression but a very great expression (output). How can I > reduce this output? > > > > TIA, > > Regards, > > > > Cetin Haftaoglu > > Arbeitsgruppe " Modellierung und Simulation in der Werkstoffmechanik" > > BAM =96 Bundesanstalt f=FCr Materialforschung und -pr=FCfung > Fachgruppe V.2 =96Werkstoffmechanik > > > > Unter den Eichen 87 > > D-12205 Berlin > > Deutschland > > > > Tel: +49-30-8104-3194 > > Fax: +49-30-8104-1527 > > Email: <mailto:cetin.haftaoglu at bam.de> cetin.haftaoglu at bam.de > > Web: www.bam.de