Re: Forcing Trig Identities
- To: mathgroup at smc.vnet.net
- Subject: [mg94640] Re: Forcing Trig Identities
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 18 Dec 2008 07:22:57 -0500 (EST)
- Organization: Uni Leipzig
- References: <giao6o$8qt$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, Mathematica 7. gives pmn[\[Rho]_, x_, z_] := PDF[MultinormalDistribution[{0, 0}, {{1, \[Rho]}, {\[Rho], 1}}], {x, z}] res = Integrate[ pmn[\[Rho], x, z], {x, -Infinity, 0}, {z, -Infinity, 0}, Assumptions -> {\[Rho]^2 < 1, \[Rho] > 0}]; FunctionExpand[res] // FullSimplify[#, Assumptions -> {\[Rho]^2 < 1, \[Rho] > 0}] & (Pi + 2*ArcSin[\[Rho]])/(4*Pi) Regards Jens Gary McClelland wrote: > In earlier versions of Mathematica (I think 5 and before), the following code: > > pmn[\[Rho]_ , x_, z_] := > PDF[MultinormalDistribution[{0, 0}, {{1, \[Rho]}, {\[Rho], 1}}], {x, > z}] > Integrate[pmn[\[Rho], x, z], {x, -Infinity, 0}, {z, -Infinity, 0}, > Assumptions -> {\[Rho] ^2 < 1, \[Rho] > 0}] > > yielded: > (\[Pi] + 2 ArcSin[\[Rho]])/(4 \[Pi]) > > now (Mathematica 7), I get the mathematically equivalent but less desirable: > (\[Pi] - ArcTan[Sqrt[-1 + 1/\[Rho]^2]])/(2 \[Pi]) > > TrigReduce and FullSimplify fail to simplify what Mathematica 7 gives to the simpler expression Mathematica 5 yielded. any suggestions on how to force trig identities? >