Re: Archimedes' Spiral
- To: mathgroup at smc.vnet.net
- Subject: [mg85624] Re: Archimedes' Spiral
- From: Szabolcs <szhorvat at gmail.com>
- Date: Sat, 16 Feb 2008 03:25:54 -0500 (EST)
- References: <fp3uad$9gf$1@smc.vnet.net>
On Feb 15, 12:50 pm, "Lea Rebanks" <lreba... at netvigator.com> wrote: > Hi All, > > I am trying to plot the Archimedes' Spiral. > > I copied this code from a web site. But it didn't work. Any ideas. > > ParaPlot[ArchimedeanSpiral[1][t], > {t, 0, 10*2*Pi}, PlotDot -> > False, AspectRatio -> Automatic, > PlotLabel -> > "Archimedes' spiral, r == theta"\ > , Ticks -> {Range[0, 60, 20], > Range[0, 60, 20]}, > Background -> GrayLevel[0]]; > Do[ParaPlot[Evaluate[ > ArchimedeanSpiral[i][t]], > {t, 0.0001, 5*2*Pi}, > PlotDot -> False, PlotPoints -> > 30, AspectRatio -> Automatic, > PlotRange -> {{-1, 1}, {-1, 1}}* > (5*2*Pi)^i*1.1, PlotLabel -> > StringForm["r == theta^``", > PaddedForm[N[i], {4, 2}]], > Ticks -> {{N[Floor[(4*2*Pi)^i]]}, > {N[Floor[(4*2*Pi)^i]]}}, > Background -> GrayLevel[0]], > {i, 0, 2, 2/20}] > > Many thanks for your help & attention. > Best Regards - Lea Rebanks... You didn't post the full code ... what are ArchimedeanSpiral[] and ParaPlot[]? But why not simply use PolarPlot[r, {r, 0, 6Pi}]?