Re: Archimedes' Spiral
- To: mathgroup at smc.vnet.net
- Subject: [mg85636] Re: Archimedes' Spiral
- From: "David Park" <djmpark at comcast.net>
- Date: Sat, 16 Feb 2008 03:32:05 -0500 (EST)
- References: <fp3uad$9gf$1@smc.vnet.net>
Lea, We can obtain the parametrization for Archimedes spiral from Alfred Gray's excellent book 'Modern Differential Geometry of Curves and Surfaces with Mathematica: Second Edition'. archimedesspiral[n_, a_][t_] := a t^(1/n) {Cos[t], Sin[t]} With[{n = 1, a = 1}, ParametricPlot[archimedesspiral[n, a][t], {t, 0, 6 \[Pi]}, Frame -> True, Axes -> False, PlotLabel -> "Archimedes Spiral", Epilog -> {Text[HoldForm["a" == a], Scaled[{.80, .95}], {-1, 0}], Text[HoldForm["n" == n], Scaled[{.80, .9}], {-1, 0}]}, BaseStyle -> {FontSize -> 12}] ] For those who have the Presentations package we can also draw the curve as a complex expression in the complex plane and dispense with Epilog. Needs["Presentations`Master`"] With[{n = 1, a = 1}, Draw2D[ {ComplexCurve[a t^(1/n) \[ExponentialE]^(\[ImaginaryI] t), {t, 0, 6 \[Pi]}], Text[HoldForm["a" == a], Scaled[{.80, .95}], {-1, 0}], Text[HoldForm["n" == n], Scaled[{.80, .9}], {-1, 0}]}, Frame -> True, PlotLabel -> "Archimedes Spiral", BaseStyle -> {FontSize -> 12}] ] -- David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ "Lea Rebanks" <lrebanks at netvigator.com> wrote in message news:fp3uad$9gf$1 at smc.vnet.net... > Hi All, > > I am trying to plot the Archimedes' Spiral. > > I copied this code from a web site. But it didn't work. Any ideas. > > ParaPlot[ArchimedeanSpiral[1][t], > {t, 0, 10*2*Pi}, PlotDot -> > False, AspectRatio -> Automatic, > PlotLabel -> > "Archimedes' spiral, r == theta"\ > , Ticks -> {Range[0, 60, 20], > Range[0, 60, 20]}, > Background -> GrayLevel[0]]; > Do[ParaPlot[Evaluate[ > ArchimedeanSpiral[i][t]], > {t, 0.0001, 5*2*Pi}, > PlotDot -> False, PlotPoints -> > 30, AspectRatio -> Automatic, > PlotRange -> {{-1, 1}, {-1, 1}}* > (5*2*Pi)^i*1.1, PlotLabel -> > StringForm["r == theta^``", > PaddedForm[N[i], {4, 2}]], > Ticks -> {{N[Floor[(4*2*Pi)^i]]}, > {N[Floor[(4*2*Pi)^i]]}}, > Background -> GrayLevel[0]], > {i, 0, 2, 2/20}] > > > > > Many thanks for your help & attention. > Best Regards - Lea Rebanks... > >