Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2008

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Archimedes' Spiral

  • To: mathgroup at smc.vnet.net
  • Subject: [mg85636] Re: Archimedes' Spiral
  • From: "David Park" <djmpark at comcast.net>
  • Date: Sat, 16 Feb 2008 03:32:05 -0500 (EST)
  • References: <fp3uad$9gf$1@smc.vnet.net>

Lea,

We can obtain the parametrization for Archimedes spiral from  Alfred Gray's 
excellent book 'Modern Differential Geometry of Curves and Surfaces with 
Mathematica: Second Edition'.

archimedesspiral[n_, a_][t_] := a t^(1/n) {Cos[t], Sin[t]}

With[{n = 1, a = 1},
 ParametricPlot[archimedesspiral[n, a][t], {t, 0, 6 \[Pi]},
  Frame -> True,
  Axes -> False,
  PlotLabel -> "Archimedes Spiral",
  Epilog -> {Text[HoldForm["a" == a], Scaled[{.80, .95}], {-1, 0}],
    Text[HoldForm["n" == n], Scaled[{.80, .9}], {-1, 0}]},
  BaseStyle -> {FontSize -> 12}]
 ]

For those who have the Presentations package we can also draw the curve as a 
complex expression in the complex plane and dispense with Epilog.

Needs["Presentations`Master`"]

With[{n = 1, a = 1},
 Draw2D[
  {ComplexCurve[a t^(1/n) \[ExponentialE]^(\[ImaginaryI] t), {t, 0, 6 
\[Pi]}],
   Text[HoldForm["a" == a], Scaled[{.80, .95}], {-1, 0}],
   Text[HoldForm["n" == n], Scaled[{.80, .9}], {-1, 0}]},
  Frame -> True,
  PlotLabel -> "Archimedes Spiral",
  BaseStyle -> {FontSize -> 12}]
 ]


-- 
David Park
djmpark at comcast.net
http://home.comcast.net/~djmpark/


"Lea Rebanks" <lrebanks at netvigator.com> wrote in message 
news:fp3uad$9gf$1 at smc.vnet.net...
> Hi All,
>
> I am trying to plot the  Archimedes' Spiral.
>
> I copied this code from a web site. But it didn't work. Any ideas.
>
> ParaPlot[ArchimedeanSpiral[1][t],
>     {t, 0, 10*2*Pi}, PlotDot ->
>       False, AspectRatio -> Automatic,
>     PlotLabel ->
>       "Archimedes' spiral, r == theta"\
>    , Ticks -> {Range[0, 60, 20],
>         Range[0, 60, 20]},
>     Background -> GrayLevel[0]];
> Do[ParaPlot[Evaluate[
>       ArchimedeanSpiral[i][t]],
>     {t, 0.0001, 5*2*Pi},
>     PlotDot -> False, PlotPoints ->
>       30, AspectRatio -> Automatic,
>     PlotRange -> {{-1, 1}, {-1, 1}}*
>         (5*2*Pi)^i*1.1, PlotLabel ->
>       StringForm["r == theta^``",
>         PaddedForm[N[i], {4, 2}]],
>     Ticks -> {{N[Floor[(4*2*Pi)^i]]},
>         {N[Floor[(4*2*Pi)^i]]}},
>     Background -> GrayLevel[0]],
>   {i, 0, 2, 2/20}]
>
>
>
>
> Many thanks for your help & attention.
> Best Regards - Lea Rebanks...
>
> 



  • Prev by Date: Re: Numerical Evaluation
  • Next by Date: rendering problem
  • Previous by thread: Re: Archimedes' Spiral
  • Next by thread: Problem with Integration/HoldPattern (?)