Code or algorithm that selects tickets in turn in Mathematica software.
- To: mathgroup at smc.vnet.net
- Subject: [mg84577] Code or algorithm that selects tickets in turn in Mathematica software.
- From: Paulo Henrique Gomes Ferreira <sphgf at yahoo.com.br>
- Date: Sat, 5 Jan 2008 04:35:52 -0500 (EST)
Hi, Math Group. > My name is Paulo Henrique from Brazil, > well excuse me my english. > > I need a help for code your for pick lottery. > I tried to rotate your code posted in the site Mathematica using the > version 5.0 and it didn't work. > Could you verify it what it is happening? > I am you sending a code that I did that calculates the lottery of called > Brazil LOTOMANIA. > This lottery, they are 100 dozens in the total, with pick 50 for card, > raffled 20 balls and it is won with 20, 19, 18, 17 and 16 successes. > The code makes card spaced by the index lexicographic, but it is not an > elegant code. > But your code could help me a lot, please order me an email with yours > it analyzes regarding the necessary changes. > At once I thank your attention. > The link of the it paginates it is: > > http://forums.wolfram.com/mathgroup/archive/2002/Apr/msg00354.html > > (Here's code that finds a good (but perhaps not optimal) solution (again, > if I've understood the problem statement). It's a "greedy" algorithm > that selects tickets in turn. It looks at all possible lottery draws > and selects one with minimal match with tickets already bought; that > draw is the next ticket bought. > > > q={8,11,13,14,16,22,23,28,31,32,34,35}; > > s=KSubsets[q,7]; > > minMatch:=Module[{t,m}, > > t=Outer[Intersection,s,tickets,1]; > > m=Min[Max[Length/@#]&/@t] > > ] > > maxMatch[s_List]:=Max[Length/@(#\[Intersection]s&/@tick)] > > buyNext:=Module[{t}, > > t=maxMatch/@s; > > Flatten[s[[First[Position[t,Min[t]]]]]] > > ] > > k=5; > > tickets={Take[q,7]} > > While[minMatch<k, > > AppendTo[tickets,buyNext] > > ]; > > tickets > > > > For k=2, the result is {{8,11,13,14,16,22,23}}. > > For k=3 and 4, the result is > {{8,11,13,14,16,22,23},{8,11,28,31,32,34,35}} > > For k=5, the result is 10 tickets: > > {{8,11,13,14,16,22,23},{8,11,28,31,32,34,35},{8,13,14,16,28,31,32}, > > {8,13,14,22,28,34,35},{8,13,16,23,31,34,35},{8,14,22,23,31,32,34}, > > {8,16,22,23,28,32,35},{11,13,14,16,32,34,35},{11,13,14,23,28,31,34}, > > {11,13,16,22,28,31,35}} > > For k=6, the result is 63 tickets. > > > > On my 2.2 GHz Pentium 4, this code took 28 seconds for k=6, but less > than one second for k=5. > > > > A much more efficient code is: > > > > ClearAll[maxMatch,minMatch,buyNext] > > maxMatch[s_List]:=maxMatch[s]=Max[Length/@(#\[Intersection]s&/@tickets)] > > buyNext:=Module[{nxt}, > > nxt=Flatten[s[[First[Position[t,Min[t]]]]]]; > > t=MapIndexed[Max[#1,Length[First[s[[#2]]]\[Intersection]nxt]]&,t]; > > minMatch=Min[t]; > > AppendTo[tickets,nxt] > > ] > > > > tickets={}; > > minMatch=0; > > s=KSubsets[q,7]; > > t=0&/@s; > > k=6; > > Timing[ > > While[minMatch<k, > > buyNext > > ]; > > ] > > tickets//Dimensions > > > > This code solved for k=6 in 1 second and k=7 in 13 seconds. It prevails > because unnecessary Outer products are eliminated, and intersections of > subsets of q with tickets already bought are eliminated. > > > > Bobby Treat ). > > My code for pick lottery is: "Enter with the values n from 51 to 100, k it should be 50 because the program is for cards of 50 dozens in the end of the program the instruction exists (cattles >>> " ProjetoLotomania.txt",{i,100,150,10}) it means that the result will be recorded in the file projetolotomania in the standard directory of the program mathematica, making the initial card 100 the final card 150 with step or jumping of 10 in 10, values that you can change, remember it is long more or less 40 minutes to do 30.000 cards, therefore he makes the bill of how many cards the program it will generate before pressing the shift+enter, however the generated cards are added to the file txt and at any moment you can interrupt the program, that the generated cards will be recorded in the file, before opening with the program COLOGA (www.cologa.com.br) he doesn't forget to remove the keys, commas and the last line of the file txt will have the value NULL it excludes this line, good luck."; ClearAll[] n=100; k=50; stmp=OpenWrite["ProjetoLotomania.txt"]; SetOptions[stmp, PageWidth->360]; Write[stmp,Do[Print[csn=Binomial[n,k]-i+1; c1=If[Binomial[n-1,50]<csn,n-1, If[Binomial[n-2,50]<csn,n-2, If[Binomial[n-3,50]<csn,n-3, If[Binomial[n-4,50]<csn,n-4, If[Binomial[n-5,50]<csn,n-5, If[Binomial[n-6,50]<csn,n-6, If[Binomial[n-7,50]<csn,n-7, If[Binomial[n-8,50]<csn,n-8, If[Binomial[n-9,50]<csn,n-9, If[Binomial[n-10,50]<csn,n-10, If[Binomial[n-11,50]<csn,n-11, If[Binomial[n-12,50]<csn,n-12, If[Binomial[n-13,50]<csn,n-13, If[Binomial[n-14,50]<csn,n-14, If[Binomial[n-15,50]<csn,n-15, If[Binomial[n-16,50]<csn,n-16, If[Binomial[n-17,50]<csn,n-17, If[Binomial[n-18,50]<csn,n-18, If[Binomial[n-19,50]<csn,n-19, If[Binomial[n-20,50]<csn,n-20, If[Binomial[n-21,50]<csn,n-21, If[Binomial[n-22,50]<csn,n-22, If[Binomial[n-23,50]<csn,n-23, If[Binomial[n-24,50]<csn,n-24, If[Binomial[n-25,50]<csn,n-25, If[Binomial[n-26,50]<csn,n-26, If[Binomial[n-27,50]<csn,n-27, If[Binomial[n-28,50]<csn,n-28, If[Binomial[n-29,50]<csn,n-29, If[Binomial[n-30,50]<csn,n-30, If[Binomial[n-31,50]<csn,n-31, If[Binomial[n-32,50]<csn,n-32, If[Binomial[n-33,50]<csn,n-33, If[Binomial[n-34,50]<csn,n-34, If[Binomial[n-35,50]<csn,n-35, If[Binomial[n-36,50]<csn,n-36, If[Binomial[n-37,50]<csn,n-37, If[Binomial[n-38,50]<csn,n-38, If[Binomial[n-39,50]<csn,n-39, If[Binomial[n-40,50]<csn,n-40, If[Binomial[n-41,50]<csn,n-41, If[Binomial[n-42,50]<csn,n-42, If[Binomial[n-43,50]<csn,n-43, If[Binomial[n-44,50]<csn,n-44, If[Binomial[n-45,50]<csn,n-45, If[Binomial[n-46,50]<csn,n-46, If[Binomial[n-47,50]<csn,n-47, If[Binomial[n-48,50]<csn,n-48, If[Binomial[n-49,50]<csn,n-49, If[Binomial[n-50,50]<csn,n-50, 49]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c2=If[Binomial[c1-1,49]<csn-Binomial[c1,50],c1-1, If[Binomial[c1-2,49]<csn-Binomial[c1,50],c1-2, If[Binomial[c1-3,49]<csn-Binomial[c1,50],c1-3, If[Binomial[c1-4,49]<csn-Binomial[c1,50],c1-4, If[Binomial[c1-5,49]<csn-Binomial[c1,50],c1-5, If[Binomial[c1-6,49]<csn-Binomial[c1,50],c1-6, If[Binomial[c1-7,49]<csn-Binomial[c1,50],c1-7, If[Binomial[c1-8,49]<csn-Binomial[c1,50],c1-8, If[Binomial[c1-9,49]<csn-Binomial[c1,50],c1-9, If[Binomial[c1-10,49]<csn-Binomial[c1,50],c1-10, If[Binomial[c1-11,49]<csn-Binomial[c1,50],c1-11, If[Binomial[c1-12,49]<csn-Binomial[c1,50],c1-12, If[Binomial[c1-13,49]<csn-Binomial[c1,50],c1-13, If[Binomial[c1-14,49]<csn-Binomial[c1,50],c1-14, If[Binomial[c1-15,49]<csn-Binomial[c1,50],c1-15, If[Binomial[c1-16,49]<csn-Binomial[c1,50],c1-16, If[Binomial[c1-17,49]<csn-Binomial[c1,50],c1-17, If[Binomial[c1-18,49]<csn-Binomial[c1,50],c1-18, If[Binomial[c1-19,49]<csn-Binomial[c1,50],c1-19, If[Binomial[c1-20,49]<csn-Binomial[c1,50],c1-20, If[Binomial[c1-21,49]<csn-Binomial[c1,50],c1-21, If[Binomial[c1-22,49]<csn-Binomial[c1,50],c1-22, If[Binomial[c1-23,49]<csn-Binomial[c1,50],c1-23, If[Binomial[c1-24,49]<csn-Binomial[c1,50],c1-24, If[Binomial[c1-25,49]<csn-Binomial[c1,50],c1-25, If[Binomial[c1-26,49]<csn-Binomial[c1,50],c1-26, If[Binomial[c1-27,49]<csn-Binomial[c1,50],c1-27, If[Binomial[c1-28,49]<csn-Binomial[c1,50],c1-28, If[Binomial[c1-29,49]<csn-Binomial[c1,50],c1-29, If[Binomial[c1-30,49]<csn-Binomial[c1,50],c1-30, If[Binomial[c1-31,49]<csn-Binomial[c1,50],c1-31, If[Binomial[c1-32,49]<csn-Binomial[c1,50],c1-32, If[Binomial[c1-33,49]<csn-Binomial[c1,50],c1-33, If[Binomial[c1-34,49]<csn-Binomial[c1,50],c1-34, If[Binomial[c1-35,49]<csn-Binomial[c1,50],c1-35, If[Binomial[c1-36,49]<csn-Binomial[c1,50],c1-36, If[Binomial[c1-37,49]<csn-Binomial[c1,50],c1-37, If[Binomial[c1-38,49]<csn-Binomial[c1,50],c1-38, If[Binomial[c1-39,49]<csn-Binomial[c1,50],c1-39, If[Binomial[c1-40,49]<csn-Binomial[c1,50],c1-40, If[Binomial[c1-41,49]<csn-Binomial[c1,50],c1-41, If[Binomial[c1-42,49]<csn-Binomial[c1,50],c1-42, If[Binomial[c1-43,49]<csn-Binomial[c1,50],c1-43, If[Binomial[c1-44,49]<csn-Binomial[c1,50],c1-44, If[Binomial[c1-45,49]<csn-Binomial[c1,50],c1-45, If[Binomial[c1-46,49]<csn-Binomial[c1,50],c1-46, If[Binomial[c1-47,49]<csn-Binomial[c1,50],c1-47, If[Binomial[c1-48,49]<csn-Binomial[c1,50],c1-48, If[Binomial[c1-49,49]<csn-Binomial[c1,50],c1-49, 48]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c3=If[Binomial[c2-1,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-1, If[Binomial[c2-2,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-2, If[Binomial[c2-3,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-3, If[Binomial[c2-4,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-4, If[Binomial[c2-5,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-5, If[Binomial[c2-6,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-6, If[Binomial[c2-7,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-7, If[Binomial[c2-8,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-8, If[Binomial[c2-9,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-9, If[Binomial[c2-10,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-10, If[Binomial[c2-11,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-11, If[Binomial[c2-12,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-12, If[Binomial[c2-13,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-13, If[Binomial[c2-14,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-14, If[Binomial[c2-15,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-15, If[Binomial[c2-16,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-16, If[Binomial[c2-17,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-17, If[Binomial[c2-18,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-18, If[Binomial[c2-19,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-19, If[Binomial[c2-20,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-20, If[Binomial[c2-21,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-21, If[Binomial[c2-22,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-22, If[Binomial[c2-23,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-23, If[Binomial[c2-24,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-24, If[Binomial[c2-25,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-25, If[Binomial[c2-26,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-26, If[Binomial[c2-27,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-27, If[Binomial[c2-28,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-28, If[Binomial[c2-29,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-29, If[Binomial[c2-30,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-30, If[Binomial[c2-31,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-31, If[Binomial[c2-32,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-32, If[Binomial[c2-33,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-33, If[Binomial[c2-34,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-34, If[Binomial[c2-35,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-35, If[Binomial[c2-36,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-36, If[Binomial[c2-37,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-37, If[Binomial[c2-38,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-38, If[Binomial[c2-39,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-39, If[Binomial[c2-40,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-40, If[Binomial[c2-41,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-41, If[Binomial[c2-42,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-42, If[Binomial[c2-43,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-43, If[Binomial[c2-44,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-44, If[Binomial[c2-45,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-45, If[Binomial[c2-46,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-46, If[Binomial[c2-47,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-47, If[Binomial[c2-48,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-48, If[Binomial[c2-49,48]<csn-Binomial[c1,50]-Binomial[c2,49],c2-49, 47]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c4=If[Binomial[c3-1,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-1, If[Binomial[c3-2,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-2, If[Binomial[c3-3,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-3, If[Binomial[c3-4,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-4, If[Binomial[c3-5,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-5, If[Binomial[c3-6,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-6, If[Binomial[c3-7,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-7, If[Binomial[c3-8,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-8, If[Binomial[c3-9,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-9, If[Binomial[c3-10,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-10, If[Binomial[c3-11,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-11, If[Binomial[c3-12,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-12, If[Binomial[c3-13,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-13, If[Binomial[c3-14,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-14, If[Binomial[c3-15,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-15, If[Binomial[c3-16,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-16, If[Binomial[c3-17,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-17, If[Binomial[c3-18,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-18, If[Binomial[c3-19,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-19, If[Binomial[c3-20,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-20, If[Binomial[c3-21,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-21, If[Binomial[c3-22,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-22, If[Binomial[c3-23,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-23, If[Binomial[c3-24,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-24, If[Binomial[c3-25,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-25, If[Binomial[c3-26,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-26, If[Binomial[c3-27,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-27, If[Binomial[c3-28,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-28, If[Binomial[c3-29,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-29, If[Binomial[c3-30,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-30, If[Binomial[c3-31,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-31, If[Binomial[c3-32,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-32, If[Binomial[c3-33,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-33, If[Binomial[c3-34,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-34, If[Binomial[c3-35,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-35, If[Binomial[c3-36,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-36, If[Binomial[c3-37,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-37, If[Binomial[c3-38,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-38, If[Binomial[c3-39,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-39, If[Binomial[c3-40,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-40, If[Binomial[c3-41,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-41, If[Binomial[c3-42,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-42, If[Binomial[c3-43,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-43, If[Binomial[c3-44,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-44, If[Binomial[c3-45,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-45, If[Binomial[c3-46,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-46, If[Binomial[c3-47,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-47, If[Binomial[c3-48,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-48, If[Binomial[c3-49,47]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48],c3-49, 46]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c5=If[Binomial[c4-1,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-1, If[Binomial[c4-2,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-2, If[Binomial[c4-3,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-3, If[Binomial[c4-4,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-4, If[Binomial[c4-5,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-5, If[Binomial[c4-6,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-6, If[Binomial[c4-7,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-7, If[Binomial[c4-8,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-8, If[Binomial[c4-9,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-9, If[Binomial[c4-10,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-10, If[Binomial[c4-11,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-11, If[Binomial[c4-12,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-12, If[Binomial[c4-13,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-13, If[Binomial[c4-14,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-14, If[Binomial[c4-15,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-15, If[Binomial[c4-16,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-16, If[Binomial[c4-17,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-17, If[Binomial[c4-18,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-18, If[Binomial[c4-19,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-19, If[Binomial[c4-20,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-20, If[Binomial[c4-21,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-21, If[Binomial[c4-22,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-22, If[Binomial[c4-23,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-23, If[Binomial[c4-24,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-24, If[Binomial[c4-25,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-25, If[Binomial[c4-26,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-26, If[Binomial[c4-27,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-27, If[Binomial[c4-28,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-28, If[Binomial[c4-29,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-29, If[Binomial[c4-30,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-30, If[Binomial[c4-31,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-31, If[Binomial[c4-32,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-32, If[Binomial[c4-33,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-33, If[Binomial[c4-34,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-34, If[Binomial[c4-35,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-35, If[Binomial[c4-36,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-36, If[Binomial[c4-37,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-37, If[Binomial[c4-38,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-38, If[Binomial[c4-39,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-39, If[Binomial[c4-40,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-40, If[Binomial[c4-41,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-41, If[Binomial[c4-42,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-42, If[Binomial[c4-43,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-43, If[Binomial[c4-44,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-44, If[Binomial[c4-45,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-45, If[Binomial[c4-46,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-46, If[Binomial[c4-47,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-47, If[Binomial[c4-48,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-48, If[Binomial[c4-49,46]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47],c4-49, 45]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c6=If[Binomial[c5-1,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-1, If[Binomial[c5-2,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-2, If[Binomial[c5-3,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-3, If[Binomial[c5-4,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-4, If[Binomial[c5-5,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-5, If[Binomial[c5-6,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-6, If[Binomial[c5-7,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-7, If[Binomial[c5-8,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-8, If[Binomial[c5-9,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-9, If[Binomial[c5-10,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-10, If[Binomial[c5-11,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-11, If[Binomial[c5-12,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-12, If[Binomial[c5-13,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-13, If[Binomial[c5-14,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-14, If[Binomial[c5-15,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-15, If[Binomial[c5-16,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-16, If[Binomial[c5-17,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-17, If[Binomial[c5-18,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-18, If[Binomial[c5-19,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-19, If[Binomial[c5-20,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-20, If[Binomial[c5-21,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-21, If[Binomial[c5-22,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-22, If[Binomial[c5-23,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-23, If[Binomial[c5-24,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-24, If[Binomial[c5-25,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-25, If[Binomial[c5-26,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-26, If[Binomial[c5-27,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-27, If[Binomial[c5-28,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-28, If[Binomial[c5-29,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-29, If[Binomial[c5-30,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-30, If[Binomial[c5-31,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-31, If[Binomial[c5-32,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-32, If[Binomial[c5-33,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-33, If[Binomial[c5-34,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-34, If[Binomial[c5-35,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-35, If[Binomial[c5-36,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-36, If[Binomial[c5-37,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-37, If[Binomial[c5-38,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-38, If[Binomial[c5-39,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-39, If[Binomial[c5-40,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-40, If[Binomial[c5-41,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-41, If[Binomial[c5-42,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-42, If[Binomial[c5-43,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-43, If[Binomial[c5-44,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-44, If[Binomial[c5-45,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-45, If[Binomial[c5-46,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-46, If[Binomial[c5-47,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-47, If[Binomial[c5-48,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-48, If[Binomial[c5-49,45]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46],c5-49, 44]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c7=If[Binomial[c6-1,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-1, If[Binomial[c6-2,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-2, If[Binomial[c6-3,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-3, If[Binomial[c6-4,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-4, If[Binomial[c6-5,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-5, If[Binomial[c6-6,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-6, If[Binomial[c6-7,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-7, If[Binomial[c6-8,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-8, If[Binomial[c6-9,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-9, If[Binomial[c6-10,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-10, If[Binomial[c6-11,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-11, If[Binomial[c6-12,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-12, If[Binomial[c6-13,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-13, If[Binomial[c6-14,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-14, If[Binomial[c6-15,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-15, If[Binomial[c6-16,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-16, If[Binomial[c6-17,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-17, If[Binomial[c6-18,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-18, If[Binomial[c6-19,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-19, If[Binomial[c6-20,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-20, If[Binomial[c6-21,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-21, If[Binomial[c6-22,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-22, If[Binomial[c6-23,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-23, If[Binomial[c6-24,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-24, If[Binomial[c6-25,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-25, If[Binomial[c6-26,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-26, If[Binomial[c6-27,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-27, If[Binomial[c6-28,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-28, If[Binomial[c6-29,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-29, If[Binomial[c6-30,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-30, If[Binomial[c6-31,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-31, If[Binomial[c6-32,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-32, If[Binomial[c6-33,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-33, If[Binomial[c6-34,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-34, If[Binomial[c6-35,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-35, If[Binomial[c6-36,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-36, If[Binomial[c6-37,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-37, If[Binomial[c6-38,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-38, If[Binomial[c6-39,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-39, If[Binomial[c6-40,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-40, If[Binomial[c6-41,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-41, If[Binomial[c6-42,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-42, If[Binomial[c6-43,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-43, If[Binomial[c6-44,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-44, If[Binomial[c6-45,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-45, If[Binomial[c6-46,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-46, If[Binomial[c6-47,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-47, If[Binomial[c6-48,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-48, If[Binomial[c6-49,44]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45],c6-49, 43]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c8=If[Binomial[c7-1,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-1, If[Binomial[c7-2,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-2, If[Binomial[c7-3,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-3, If[Binomial[c7-4,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-4, If[Binomial[c7-5,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-5, If[Binomial[c7-6,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-6, If[Binomial[c7-7,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-7, If[Binomial[c7-8,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-8, If[Binomial[c7-9,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-9, If[Binomial[c7-10,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-10, If[Binomial[c7-11,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-11, If[Binomial[c7-12,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-12, If[Binomial[c7-13,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-13, If[Binomial[c7-14,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-14, If[Binomial[c7-15,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-15, If[Binomial[c7-16,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-16, If[Binomial[c7-17,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-17, If[Binomial[c7-18,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-18, If[Binomial[c7-19,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-19, If[Binomial[c7-20,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-20, If[Binomial[c7-21,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-21, If[Binomial[c7-22,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-22, If[Binomial[c7-23,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-23, If[Binomial[c7-24,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-24, If[Binomial[c7-25,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-25, If[Binomial[c7-26,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-26, If[Binomial[c7-27,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-27, If[Binomial[c7-28,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-28, If[Binomial[c7-29,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-29, If[Binomial[c7-30,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-30, If[Binomial[c7-31,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-31, If[Binomial[c7-32,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-32, If[Binomial[c7-33,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-33, If[Binomial[c7-34,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-34, If[Binomial[c7-35,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-35, If[Binomial[c7-36,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-36, If[Binomial[c7-37,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-37, If[Binomial[c7-38,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-38, If[Binomial[c7-39,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-39, If[Binomial[c7-40,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-40, If[Binomial[c7-41,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-41, If[Binomial[c7-42,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-42, If[Binomial[c7-43,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-43, If[Binomial[c7-44,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-44, If[Binomial[c7-45,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-45, If[Binomial[c7-46,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-46, If[Binomial[c7-47,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-47, If[Binomial[c7-48,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-48, If[Binomial[c7-49,43]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44],c7-49, 42]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c9=If[Binomial[c8-1,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-1, If[Binomial[c8-2,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-2, If[Binomial[c8-3,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-3, If[Binomial[c8-4,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-4, If[Binomial[c8-5,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-5, If[Binomial[c8-6,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-6, If[Binomial[c8-7,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-7, If[Binomial[c8-8,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-8, If[Binomial[c8-9,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-9, If[Binomial[c8-10,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-10, If[Binomial[c8-11,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-11, If[Binomial[c8-12,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-12, If[Binomial[c8-13,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-13, If[Binomial[c8-14,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-14, If[Binomial[c8-15,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-15, If[Binomial[c8-16,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-16, If[Binomial[c8-17,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-17, If[Binomial[c8-18,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-18, If[Binomial[c8-19,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-19, If[Binomial[c8-20,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-20, If[Binomial[c8-21,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-21, If[Binomial[c8-22,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-22, If[Binomial[c8-23,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-23, If[Binomial[c8-24,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-24, If[Binomial[c8-25,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-25, If[Binomial[c8-26,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-26, If[Binomial[c8-27,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-27, If[Binomial[c8-28,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-28, If[Binomial[c8-29,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-29, If[Binomial[c8-30,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-30, If[Binomial[c8-31,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-31, If[Binomial[c8-32,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-32, If[Binomial[c8-33,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-33, If[Binomial[c8-34,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-34, If[Binomial[c8-35,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-35, If[Binomial[c8-36,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-36, If[Binomial[c8-37,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-37, If[Binomial[c8-38,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-38, If[Binomial[c8-39,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-39, If[Binomial[c8-40,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-40, If[Binomial[c8-41,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-41, If[Binomial[c8-42,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-42, If[Binomial[c8-43,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-43, If[Binomial[c8-44,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-44, If[Binomial[c8-45,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-45, If[Binomial[c8-46,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-46, If[Binomial[c8-47,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-47, If[Binomial[c8-48,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-48, If[Binomial[c8-49,42]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43],c8-49, 41]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c10=If[Binomial[c9-1,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-1, If[Binomial[c9-2,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-2, If[Binomial[c9-3,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-3, If[Binomial[c9-4,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-4, If[Binomial[c9-5,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-5, If[Binomial[c9-6,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-6, If[Binomial[c9-7,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-7, If[Binomial[c9-8,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-8, If[Binomial[c9-9,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-9, If[Binomial[c9-10,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-10, If[Binomial[c9-11,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-11, If[Binomial[c9-12,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-12, If[Binomial[c9-13,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-13, If[Binomial[c9-14,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-14, If[Binomial[c9-15,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-15, If[Binomial[c9-16,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-16, If[Binomial[c9-17,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-17, If[Binomial[c9-18,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-18, If[Binomial[c9-19,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-19, If[Binomial[c9-20,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-20, If[Binomial[c9-21,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-21, If[Binomial[c9-22,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-22, If[Binomial[c9-23,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-23, If[Binomial[c9-24,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-24, If[Binomial[c9-25,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-25, If[Binomial[c9-26,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-26, If[Binomial[c9-27,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-27, If[Binomial[c9-28,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-28, If[Binomial[c9-29,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-29, If[Binomial[c9-30,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-30, If[Binomial[c9-31,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-31, If[Binomial[c9-32,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-32, If[Binomial[c9-33,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-33, If[Binomial[c9-34,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-34, If[Binomial[c9-35,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-35, If[Binomial[c9-36,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-36, If[Binomial[c9-37,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-37, If[Binomial[c9-38,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-38, If[Binomial[c9-39,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-39, If[Binomial[c9-40,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-40, If[Binomial[c9-41,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-41, If[Binomial[c9-42,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-42, If[Binomial[c9-43,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-43, If[Binomial[c9-44,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-44, If[Binomial[c9-45,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-45, If[Binomial[c9-46,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-46, If[Binomial[c9-47,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-47, If[Binomial[c9-48,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-48, If[Binomial[c9-49,41]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42],c9-49, 40]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c11=If[Binomial[c10-1,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-1, If[Binomial[c10-2,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-2, If[Binomial[c10-3,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-3, If[Binomial[c10-4,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-4, If[Binomial[c10-5,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-5, If[Binomial[c10-6,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-6, If[Binomial[c10-7,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-7, If[Binomial[c10-8,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-8, If[Binomial[c10-9,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-9, If[Binomial[c10-10,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-10, If[Binomial[c10-11,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-11, If[Binomial[c10-12,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-12, If[Binomial[c10-13,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-13, If[Binomial[c10-14,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-14, If[Binomial[c10-15,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-15, If[Binomial[c10-16,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-16, If[Binomial[c10-17,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-17, If[Binomial[c10-18,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-18, If[Binomial[c10-19,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-19, If[Binomial[c10-20,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-20, If[Binomial[c10-21,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-21, If[Binomial[c10-22,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-22, If[Binomial[c10-23,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-23, If[Binomial[c10-24,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-24, If[Binomial[c10-25,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-25, If[Binomial[c10-26,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-26, If[Binomial[c10-27,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-27, If[Binomial[c10-28,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-28, If[Binomial[c10-29,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-29, If[Binomial[c10-30,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-30, If[Binomial[c10-31,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-31, If[Binomial[c10-32,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-32, If[Binomial[c10-33,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-33, If[Binomial[c10-34,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-34, If[Binomial[c10-35,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-35, If[Binomial[c10-36,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-36, If[Binomial[c10-37,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-37, If[Binomial[c10-38,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-38, If[Binomial[c10-39,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-39, If[Binomial[c10-40,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-40, If[Binomial[c10-41,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-41, If[Binomial[c10-42,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-42, If[Binomial[c10-43,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-43, If[Binomial[c10-44,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-44, If[Binomial[c10-45,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-45, If[Binomial[c10-46,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-46, If[Binomial[c10-47,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-47, If[Binomial[c10-48,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-48, If[Binomial[c10-49,40]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41],c10-49, 39]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c12=If[Binomial[c11-1,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-1, If[Binomial[c11-2,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-2, If[Binomial[c11-3,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-3, If[Binomial[c11-4,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-4, If[Binomial[c11-5,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-5, If[Binomial[c11-6,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-6, If[Binomial[c11-7,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-7, If[Binomial[c11-8,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-8, If[Binomial[c11-9,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-9, If[Binomial[c11-10,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-10, If[Binomial[c11-11,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-11, If[Binomial[c11-12,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-12, If[Binomial[c11-13,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-13, If[Binomial[c11-14,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-14, If[Binomial[c11-15,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-15, If[Binomial[c11-16,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-16, If[Binomial[c11-17,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-17, If[Binomial[c11-18,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-18, If[Binomial[c11-19,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-19, If[Binomial[c11-20,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-20, If[Binomial[c11-21,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-21, If[Binomial[c11-22,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-22, If[Binomial[c11-23,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-23, If[Binomial[c11-24,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-24, If[Binomial[c11-25,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-25, If[Binomial[c11-26,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-26, If[Binomial[c11-27,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-27, If[Binomial[c11-28,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-28, If[Binomial[c11-29,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-29, If[Binomial[c11-30,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-30, If[Binomial[c11-31,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-31, If[Binomial[c11-32,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-32, If[Binomial[c11-33,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-33, If[Binomial[c11-34,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-34, If[Binomial[c11-35,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-35, If[Binomial[c11-36,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-36, If[Binomial[c11-37,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-37, If[Binomial[c11-38,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-38, If[Binomial[c11-39,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-39, If[Binomial[c11-40,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-40, If[Binomial[c11-41,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-41, If[Binomial[c11-42,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-42, If[Binomial[c11-43,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-43, If[Binomial[c11-44,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-44, If[Binomial[c11-45,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-45, If[Binomial[c11-46,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-46, If[Binomial[c11-47,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-47, If[Binomial[c11-48,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-48, If[Binomial[c11-49,39]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40],c11-49, 38]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c13=If[Binomial[c12-1,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-1, If[Binomial[c12-2,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-2, If[Binomial[c12-3,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-3, If[Binomial[c12-4,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-4, If[Binomial[c12-5,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-5, If[Binomial[c12-6,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-6, If[Binomial[c12-7,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-7, If[Binomial[c12-8,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-8, If[Binomial[c12-9,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-9, If[Binomial[c12-10,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-10, If[Binomial[c12-11,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-11, If[Binomial[c12-12,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-12, If[Binomial[c12-13,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-13, If[Binomial[c12-14,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-14, If[Binomial[c12-15,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-15, If[Binomial[c12-16,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-16, If[Binomial[c12-17,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-17, If[Binomial[c12-18,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-18, If[Binomial[c12-19,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-19, If[Binomial[c12-20,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-20, If[Binomial[c12-21,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-21, If[Binomial[c12-22,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-22, If[Binomial[c12-23,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-23, If[Binomial[c12-24,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-24, If[Binomial[c12-25,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-25, If[Binomial[c12-26,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-26, If[Binomial[c12-27,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-27, If[Binomial[c12-28,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-28, If[Binomial[c12-29,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-29, If[Binomial[c12-30,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-30, If[Binomial[c12-31,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-31, If[Binomial[c12-32,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-32, If[Binomial[c12-33,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-33, If[Binomial[c12-34,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-34, If[Binomial[c12-35,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-35, If[Binomial[c12-36,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-36, If[Binomial[c12-37,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-37, If[Binomial[c12-38,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-38, If[Binomial[c12-39,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-39, If[Binomial[c12-40,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-40, If[Binomial[c12-41,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-41, If[Binomial[c12-42,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-42, If[Binomial[c12-43,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-43, If[Binomial[c12-44,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-44, If[Binomial[c12-45,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-45, If[Binomial[c12-46,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-46, If[Binomial[c12-47,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-47, If[Binomial[c12-48,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-48, If[Binomial[c12-49,38]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39],c12-49, 37]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c14=If[Binomial[c13-1,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-1, If[Binomial[c13-2,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-2, If[Binomial[c13-3,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-3, If[Binomial[c13-4,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-4, If[Binomial[c13-5,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-5, If[Binomial[c13-6,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-6, If[Binomial[c13-7,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-7, If[Binomial[c13-8,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-8, If[Binomial[c13-9,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-9, If[Binomial[c13-10,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-10, If[Binomial[c13-11,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-11, If[Binomial[c13-12,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-12, If[Binomial[c13-13,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-13, If[Binomial[c13-14,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-14, If[Binomial[c13-15,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-15, If[Binomial[c13-16,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-16, If[Binomial[c13-17,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-17, If[Binomial[c13-18,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-18, If[Binomial[c13-19,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-19, If[Binomial[c13-20,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-20, If[Binomial[c13-21,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-21, If[Binomial[c13-22,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-22, If[Binomial[c13-23,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-23, If[Binomial[c13-24,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-24, If[Binomial[c13-25,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-25, If[Binomial[c13-26,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-26, If[Binomial[c13-27,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-27, If[Binomial[c13-28,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-28, If[Binomial[c13-29,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-29, If[Binomial[c13-30,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-30, If[Binomial[c13-31,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-31, If[Binomial[c13-32,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-32, If[Binomial[c13-33,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-33, If[Binomial[c13-34,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-34, If[Binomial[c13-35,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-35, If[Binomial[c13-36,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-36, If[Binomial[c13-37,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-37, If[Binomial[c13-38,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-38, If[Binomial[c13-39,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-39, If[Binomial[c13-40,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-40, If[Binomial[c13-41,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-41, If[Binomial[c13-42,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-42, If[Binomial[c13-43,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-43, If[Binomial[c13-44,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-44, If[Binomial[c13-45,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-45, If[Binomial[c13-46,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-46, If[Binomial[c13-47,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-47, If[Binomial[c13-48,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-48, If[Binomial[c13-49,37]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38],c13-49, 36]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c15=If[Binomial[c14-1,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-1, If[Binomial[c14-2,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-2, If[Binomial[c14-3,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-3, If[Binomial[c14-4,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-4, If[Binomial[c14-5,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-5, If[Binomial[c14-6,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-6, If[Binomial[c14-7,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-7, If[Binomial[c14-8,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-8, If[Binomial[c14-9,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-9, If[Binomial[c14-10,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-10, If[Binomial[c14-11,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-11, If[Binomial[c14-12,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-12, If[Binomial[c14-13,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-13, If[Binomial[c14-14,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-14, If[Binomial[c14-15,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-15, If[Binomial[c14-16,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-16, If[Binomial[c14-17,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-17, If[Binomial[c14-18,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-18, If[Binomial[c14-19,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-19, If[Binomial[c14-20,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-20, If[Binomial[c14-21,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-21, If[Binomial[c14-22,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-22, If[Binomial[c14-23,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-23, If[Binomial[c14-24,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-24, If[Binomial[c14-25,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-25, If[Binomial[c14-26,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-26, If[Binomial[c14-27,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-27, If[Binomial[c14-28,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-28, If[Binomial[c14-29,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-29, If[Binomial[c14-30,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-30, If[Binomial[c14-31,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-31, If[Binomial[c14-32,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-32, If[Binomial[c14-33,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-33, If[Binomial[c14-34,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-34, If[Binomial[c14-35,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-35, If[Binomial[c14-36,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-36, If[Binomial[c14-37,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-37, If[Binomial[c14-38,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-38, If[Binomial[c14-39,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-39, If[Binomial[c14-40,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-40, If[Binomial[c14-41,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-41, If[Binomial[c14-42,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-42, If[Binomial[c14-43,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-43, If[Binomial[c14-44,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-44, If[Binomial[c14-45,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-45, If[Binomial[c14-46,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-46, If[Binomial[c14-47,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-47, If[Binomial[c14-48,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-48, If[Binomial[c14-49,36]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37],c14-49, 35]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c16=If[Binomial[c15-1,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-1, If[Binomial[c15-2,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-2, If[Binomial[c15-3,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-3, If[Binomial[c15-4,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-4, If[Binomial[c15-5,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-5, If[Binomial[c15-6,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-6, If[Binomial[c15-7,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-7, If[Binomial[c15-8,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-8, If[Binomial[c15-9,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-9, If[Binomial[c15-10,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-10, If[Binomial[c15-11,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-11, If[Binomial[c15-12,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-12, If[Binomial[c15-13,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-13, If[Binomial[c15-14,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-14, If[Binomial[c15-15,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-15, If[Binomial[c15-16,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-16, If[Binomial[c15-17,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-17, If[Binomial[c15-18,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-18, If[Binomial[c15-19,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-19, If[Binomial[c15-20,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-20, If[Binomial[c15-21,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-21, If[Binomial[c15-22,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-22, If[Binomial[c15-23,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-23, If[Binomial[c15-24,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-24, If[Binomial[c15-25,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-25, If[Binomial[c15-26,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-26, If[Binomial[c15-27,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-27, If[Binomial[c15-28,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-28, If[Binomial[c15-29,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-29, If[Binomial[c15-30,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-30, If[Binomial[c15-31,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-31, If[Binomial[c15-32,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-32, If[Binomial[c15-33,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-33, If[Binomial[c15-34,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-34, If[Binomial[c15-35,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-35, If[Binomial[c15-36,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-36, If[Binomial[c15-37,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-37, If[Binomial[c15-38,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-38, If[Binomial[c15-39,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-39, If[Binomial[c15-40,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-40, If[Binomial[c15-41,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-41, If[Binomial[c15-42,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-42, If[Binomial[c15-43,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-43, If[Binomial[c15-44,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-44, If[Binomial[c15-45,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-45, If[Binomial[c15-46,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-46, If[Binomial[c15-47,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-47, If[Binomial[c15-48,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-48, If[Binomial[c15-49,35]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36],c15-49, 34]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c17=If[Binomial[c16-1,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-1, If[Binomial[c16-2,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-2, If[Binomial[c16-3,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-3, If[Binomial[c16-4,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-4, If[Binomial[c16-5,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-5, If[Binomial[c16-6,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-6, If[Binomial[c16-7,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-7, If[Binomial[c16-8,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-8, If[Binomial[c16-9,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-9, If[Binomial[c16-10,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-10, If[Binomial[c16-11,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-11, If[Binomial[c16-12,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-12, If[Binomial[c16-13,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-13, If[Binomial[c16-14,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-14, If[Binomial[c16-15,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-15, If[Binomial[c16-16,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-16, If[Binomial[c16-17,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-17, If[Binomial[c16-18,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-18, If[Binomial[c16-19,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-19, If[Binomial[c16-20,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-20, If[Binomial[c16-21,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-21, If[Binomial[c16-22,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-22, If[Binomial[c16-23,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-23, If[Binomial[c16-24,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-24, If[Binomial[c16-25,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-25, If[Binomial[c16-26,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-26, If[Binomial[c16-27,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-27, If[Binomial[c16-28,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-28, If[Binomial[c16-29,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-29, If[Binomial[c16-30,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-30, If[Binomial[c16-31,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-31, If[Binomial[c16-32,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-32, If[Binomial[c16-33,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-33, If[Binomial[c16-34,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-34, If[Binomial[c16-35,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-35, If[Binomial[c16-36,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-36, If[Binomial[c16-37,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-37, If[Binomial[c16-38,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-38, If[Binomial[c16-39,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-39, If[Binomial[c16-40,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-40, If[Binomial[c16-41,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-41, If[Binomial[c16-42,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-42, If[Binomial[c16-43,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-43, If[Binomial[c16-44,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-44, If[Binomial[c16-45,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-45, If[Binomial[c16-46,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-46, If[Binomial[c16-47,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-47, If[Binomial[c16-48,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-48, If[Binomial[c16-49,34]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35],c16-49, 33]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c18=If[Binomial[c17-1,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-1, If[Binomial[c17-2,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-2, If[Binomial[c17-3,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-3, If[Binomial[c17-4,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-4, If[Binomial[c17-5,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-5, If[Binomial[c17-6,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-6, If[Binomial[c17-7,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-7, If[Binomial[c17-8,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-8, If[Binomial[c17-9,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-9, If[Binomial[c17-10,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-10, If[Binomial[c17-11,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-11, If[Binomial[c17-12,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-12, If[Binomial[c17-13,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-13, If[Binomial[c17-14,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-14, If[Binomial[c17-15,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-15, If[Binomial[c17-16,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-16, If[Binomial[c17-17,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-17, If[Binomial[c17-18,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-18, If[Binomial[c17-19,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-19, If[Binomial[c17-20,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-20, If[Binomial[c17-21,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-21, If[Binomial[c17-22,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-22, If[Binomial[c17-23,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-23, If[Binomial[c17-24,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-24, If[Binomial[c17-25,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-25, If[Binomial[c17-26,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-26, If[Binomial[c17-27,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-27, If[Binomial[c17-28,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-28, If[Binomial[c17-29,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-29, If[Binomial[c17-30,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-30, If[Binomial[c17-31,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-31, If[Binomial[c17-32,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-32, If[Binomial[c17-33,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-33, If[Binomial[c17-34,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-34, If[Binomial[c17-35,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-35, If[Binomial[c17-36,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-36, If[Binomial[c17-37,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-37, If[Binomial[c17-38,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-38, If[Binomial[c17-39,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-39, If[Binomial[c17-40,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-40, If[Binomial[c17-41,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-41, If[Binomial[c17-42,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-42, If[Binomial[c17-43,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-43, If[Binomial[c17-44,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-44, If[Binomial[c17-45,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-45, If[Binomial[c17-46,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-46, If[Binomial[c17-47,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-47, If[Binomial[c17-48,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-48, If[Binomial[c17-49,33]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34],c17-49, 32]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c19=If[Binomial[c18-1,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-1, If[Binomial[c18-2,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-2, If[Binomial[c18-3,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-3, If[Binomial[c18-4,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-4, If[Binomial[c18-5,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-5, If[Binomial[c18-6,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-6, If[Binomial[c18-7,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-7, If[Binomial[c18-8,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-8, If[Binomial[c18-9,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-9, If[Binomial[c18-10,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-10, If[Binomial[c18-11,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-11, If[Binomial[c18-12,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-12, If[Binomial[c18-13,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-13, If[Binomial[c18-14,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-14, If[Binomial[c18-15,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-15, If[Binomial[c18-16,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-16, If[Binomial[c18-17,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-17, If[Binomial[c18-18,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-18, If[Binomial[c18-19,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-19, If[Binomial[c18-20,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-20, If[Binomial[c18-21,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-21, If[Binomial[c18-22,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-22, If[Binomial[c18-23,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-23, If[Binomial[c18-24,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-24, If[Binomial[c18-25,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-25, If[Binomial[c18-26,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-26, If[Binomial[c18-27,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-27, If[Binomial[c18-28,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-28, If[Binomial[c18-29,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-29, If[Binomial[c18-30,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-30, If[Binomial[c18-31,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-31, If[Binomial[c18-32,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-32, If[Binomial[c18-33,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-33, If[Binomial[c18-34,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-34, If[Binomial[c18-35,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-35, If[Binomial[c18-36,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-36, If[Binomial[c18-37,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-37, If[Binomial[c18-38,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-38, If[Binomial[c18-39,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-39, If[Binomial[c18-40,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-40, If[Binomial[c18-41,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-41, If[Binomial[c18-42,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-42, If[Binomial[c18-43,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-43, If[Binomial[c18-44,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-44, If[Binomial[c18-45,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-45, If[Binomial[c18-46,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-46, If[Binomial[c18-47,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-47, If[Binomial[c18-48,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-48, If[Binomial[c18-49,32]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33],c18-49, 31]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c20=If[Binomial[c19-1,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-1, If[Binomial[c19-2,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-2, If[Binomial[c19-3,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-3, If[Binomial[c19-4,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-4, If[Binomial[c19-5,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-5, If[Binomial[c19-6,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-6, If[Binomial[c19-7,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-7, If[Binomial[c19-8,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-8, If[Binomial[c19-9,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-9, If[Binomial[c19-10,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-10, If[Binomial[c19-11,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-11, If[Binomial[c19-12,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-12, If[Binomial[c19-13,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-13, If[Binomial[c19-14,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-14, If[Binomial[c19-15,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-15, If[Binomial[c19-16,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-16, If[Binomial[c19-17,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-17, If[Binomial[c19-18,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-18, If[Binomial[c19-19,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-19, If[Binomial[c19-20,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-20, If[Binomial[c19-21,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-21, If[Binomial[c19-22,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-22, If[Binomial[c19-23,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-23, If[Binomial[c19-24,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-24, If[Binomial[c19-25,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-25, If[Binomial[c19-26,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-26, If[Binomial[c19-27,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-27, If[Binomial[c19-28,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-28, If[Binomial[c19-29,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-29, If[Binomial[c19-30,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-30, If[Binomial[c19-31,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-31, If[Binomial[c19-32,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-32, If[Binomial[c19-33,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-33, If[Binomial[c19-34,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-34, If[Binomial[c19-35,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-35, If[Binomial[c19-36,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-36, If[Binomial[c19-37,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-37, If[Binomial[c19-38,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-38, If[Binomial[c19-39,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-39, If[Binomial[c19-40,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-40, If[Binomial[c19-41,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-41, If[Binomial[c19-42,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-42, If[Binomial[c19-43,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-43, If[Binomial[c19-44,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-44, If[Binomial[c19-45,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-45, If[Binomial[c19-46,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-46, If[Binomial[c19-47,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-47, If[Binomial[c19-48,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-48, If[Binomial[c19-49,31]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32],c19-49, 30]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c21=If[Binomial[c20-1,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-1, If[Binomial[c20-2,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-2, If[Binomial[c20-3,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-3, If[Binomial[c20-4,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-4, If[Binomial[c20-5,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-5, If[Binomial[c20-6,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-6, If[Binomial[c20-7,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-7, If[Binomial[c20-8,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-8, If[Binomial[c20-9,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-9, If[Binomial[c20-10,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-10, If[Binomial[c20-11,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-11, If[Binomial[c20-12,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-12, If[Binomial[c20-13,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-13, If[Binomial[c20-14,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-14, If[Binomial[c20-15,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-15, If[Binomial[c20-16,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-16, If[Binomial[c20-17,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-17, If[Binomial[c20-18,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-18, If[Binomial[c20-19,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-19, If[Binomial[c20-20,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-20, If[Binomial[c20-21,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-21, If[Binomial[c20-22,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-22, If[Binomial[c20-23,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-23, If[Binomial[c20-24,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-24, If[Binomial[c20-25,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-25, If[Binomial[c20-26,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-26, If[Binomial[c20-27,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-27, If[Binomial[c20-28,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-28, If[Binomial[c20-29,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-29, If[Binomial[c20-30,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-30, If[Binomial[c20-31,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-31, If[Binomial[c20-32,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-32, If[Binomial[c20-33,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-33, If[Binomial[c20-34,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-34, If[Binomial[c20-35,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-35, If[Binomial[c20-36,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-36, If[Binomial[c20-37,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-37, If[Binomial[c20-38,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-38, If[Binomial[c20-39,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-39, If[Binomial[c20-40,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-40, If[Binomial[c20-41,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-41, If[Binomial[c20-42,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-42, If[Binomial[c20-43,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-43, If[Binomial[c20-44,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-44, If[Binomial[c20-45,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-45, If[Binomial[c20-46,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-46, If[Binomial[c20-47,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-47, If[Binomial[c20-48,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-48, If[Binomial[c20-49,30]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31],c20-49, 29]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c22=If[Binomial[c21-1,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-1, If[Binomial[c21-2,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-2, If[Binomial[c21-3,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-3, If[Binomial[c21-4,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-4, If[Binomial[c21-5,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-5, If[Binomial[c21-6,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-6, If[Binomial[c21-7,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-7, If[Binomial[c21-8,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-8, If[Binomial[c21-9,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-9, If[Binomial[c21-10,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-10, If[Binomial[c21-11,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-11, If[Binomial[c21-12,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-12, If[Binomial[c21-13,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-13, If[Binomial[c21-14,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-14, If[Binomial[c21-15,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-15, If[Binomial[c21-16,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-16, If[Binomial[c21-17,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-17, If[Binomial[c21-18,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-18, If[Binomial[c21-19,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-19, If[Binomial[c21-20,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-20, If[Binomial[c21-21,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-21, If[Binomial[c21-22,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-22, If[Binomial[c21-23,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-23, If[Binomial[c21-24,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-24, If[Binomial[c21-25,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-25, If[Binomial[c21-26,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-26, If[Binomial[c21-27,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-27, If[Binomial[c21-28,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-28, If[Binomial[c21-29,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-29, If[Binomial[c21-30,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-30, If[Binomial[c21-31,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-31, If[Binomial[c21-32,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-32, If[Binomial[c21-33,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-33, If[Binomial[c21-34,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-34, If[Binomial[c21-35,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-35, If[Binomial[c21-36,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-36, If[Binomial[c21-37,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-37, If[Binomial[c21-38,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-38, If[Binomial[c21-39,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-39, If[Binomial[c21-40,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-40, If[Binomial[c21-41,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-41, If[Binomial[c21-42,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-42, If[Binomial[c21-43,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-43, If[Binomial[c21-44,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-44, If[Binomial[c21-45,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-45, If[Binomial[c21-46,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-46, If[Binomial[c21-47,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-47, If[Binomial[c21-48,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-48, If[Binomial[c21-49,29]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30],c21-49, 28]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c23=If[Binomial[c22-1,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-1, If[Binomial[c22-2,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-2, If[Binomial[c22-3,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-3, If[Binomial[c22-4,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-4, If[Binomial[c22-5,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-5, If[Binomial[c22-6,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-6, If[Binomial[c22-7,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-7, If[Binomial[c22-8,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-8, If[Binomial[c22-9,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-9, If[Binomial[c22-10,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-10, If[Binomial[c22-11,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-11, If[Binomial[c22-12,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-12, If[Binomial[c22-13,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-13, If[Binomial[c22-14,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-14, If[Binomial[c22-15,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-15, If[Binomial[c22-16,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-16, If[Binomial[c22-17,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-17, If[Binomial[c22-18,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-18, If[Binomial[c22-19,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-19, If[Binomial[c22-20,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-20, If[Binomial[c22-21,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-21, If[Binomial[c22-22,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-22, If[Binomial[c22-23,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-23, If[Binomial[c22-24,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-24, If[Binomial[c22-25,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-25, If[Binomial[c22-26,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-26, If[Binomial[c22-27,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-27, If[Binomial[c22-28,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-28, If[Binomial[c22-29,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-29, If[Binomial[c22-30,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-30, If[Binomial[c22-31,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-31, If[Binomial[c22-32,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-32, If[Binomial[c22-33,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-33, If[Binomial[c22-34,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-34, If[Binomial[c22-35,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-35, If[Binomial[c22-36,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-36, If[Binomial[c22-37,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-37, If[Binomial[c22-38,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-38, If[Binomial[c22-39,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-39, If[Binomial[c22-40,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-40, If[Binomial[c22-41,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-41, If[Binomial[c22-42,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-42, If[Binomial[c22-43,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-43, If[Binomial[c22-44,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-44, If[Binomial[c22-45,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-45, If[Binomial[c22-46,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-46, If[Binomial[c22-47,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-47, If[Binomial[c22-48,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-48, If[Binomial[c22-49,28]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29],c22-49, 27]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c24=If[Binomial[c23-1,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-1, If[Binomial[c23-2,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-2, If[Binomial[c23-3,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-3, If[Binomial[c23-4,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-4, If[Binomial[c23-5,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-5, If[Binomial[c23-6,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-6, If[Binomial[c23-7,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-7, If[Binomial[c23-8,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-8, If[Binomial[c23-9,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-9, If[Binomial[c23-10,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-10, If[Binomial[c23-11,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-11, If[Binomial[c23-12,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-12, If[Binomial[c23-13,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-13, If[Binomial[c23-14,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-14, If[Binomial[c23-15,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-15, If[Binomial[c23-16,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-16, If[Binomial[c23-17,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-17, If[Binomial[c23-18,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-18, If[Binomial[c23-19,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-19, If[Binomial[c23-20,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-20, If[Binomial[c23-21,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-21, If[Binomial[c23-22,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-22, If[Binomial[c23-23,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-23, If[Binomial[c23-24,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-24, If[Binomial[c23-25,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-25, If[Binomial[c23-26,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-26, If[Binomial[c23-27,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-27, If[Binomial[c23-28,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-28, If[Binomial[c23-29,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-29, If[Binomial[c23-30,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-30, If[Binomial[c23-31,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-31, If[Binomial[c23-32,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-32, If[Binomial[c23-33,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-33, If[Binomial[c23-34,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-34, If[Binomial[c23-35,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-35, If[Binomial[c23-36,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-36, If[Binomial[c23-37,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-37, If[Binomial[c23-38,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-38, If[Binomial[c23-39,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-39, If[Binomial[c23-40,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-40, If[Binomial[c23-41,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-41, If[Binomial[c23-42,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-42, If[Binomial[c23-43,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-43, If[Binomial[c23-44,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-44, If[Binomial[c23-45,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-45, If[Binomial[c23-46,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-46, If[Binomial[c23-47,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-47, If[Binomial[c23-48,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-48, If[Binomial[c23-49,27]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28],c23-49, 26]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c25=If[Binomial[c24-1,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-1, If[Binomial[c24-2,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-2, If[Binomial[c24-3,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-3, If[Binomial[c24-4,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-4, If[Binomial[c24-5,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-5, If[Binomial[c24-6,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-6, If[Binomial[c24-7,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-7, If[Binomial[c24-8,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-8, If[Binomial[c24-9,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-9, If[Binomial[c24-10,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-10, If[Binomial[c24-11,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-11, If[Binomial[c24-12,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-12, If[Binomial[c24-13,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-13, If[Binomial[c24-14,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-14, If[Binomial[c24-15,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-15, If[Binomial[c24-16,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-16, If[Binomial[c24-17,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-17, If[Binomial[c24-18,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-18, If[Binomial[c24-19,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-19, If[Binomial[c24-20,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-20, If[Binomial[c24-21,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-21, If[Binomial[c24-22,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-22, If[Binomial[c24-23,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-23, If[Binomial[c24-24,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-24, If[Binomial[c24-25,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-25, If[Binomial[c24-26,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-26, If[Binomial[c24-27,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-27, If[Binomial[c24-28,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-28, If[Binomial[c24-29,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-29, If[Binomial[c24-30,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-30, If[Binomial[c24-31,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-31, If[Binomial[c24-32,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-32, If[Binomial[c24-33,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-33, If[Binomial[c24-34,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-34, If[Binomial[c24-35,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-35, If[Binomial[c24-36,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-36, If[Binomial[c24-37,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-37, If[Binomial[c24-38,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-38, If[Binomial[c24-39,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-39, If[Binomial[c24-40,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-40, If[Binomial[c24-41,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-41, If[Binomial[c24-42,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-42, If[Binomial[c24-43,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-43, If[Binomial[c24-44,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-44, If[Binomial[c24-45,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-45, If[Binomial[c24-46,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-46, If[Binomial[c24-47,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-47, If[Binomial[c24-48,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-48, If[Binomial[c24-49,26]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27],c24-49, 25]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c26=If[Binomial[c25-1,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-1, If[Binomial[c25-2,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-2, If[Binomial[c25-3,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-3, If[Binomial[c25-4,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-4, If[Binomial[c25-5,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-5, If[Binomial[c25-6,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-6, If[Binomial[c25-7,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-7, If[Binomial[c25-8,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-8, If[Binomial[c25-9,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-9, If[Binomial[c25-10,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-10, If[Binomial[c25-11,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-11, If[Binomial[c25-12,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-12, If[Binomial[c25-13,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-13, If[Binomial[c25-14,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-14, If[Binomial[c25-15,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-15, If[Binomial[c25-16,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-16, If[Binomial[c25-17,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-17, If[Binomial[c25-18,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-18, If[Binomial[c25-19,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-19, If[Binomial[c25-20,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-20, If[Binomial[c25-21,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-21, If[Binomial[c25-22,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-22, If[Binomial[c25-23,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-23, If[Binomial[c25-24,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-24, If[Binomial[c25-25,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-25, If[Binomial[c25-26,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-26, If[Binomial[c25-27,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-27, If[Binomial[c25-28,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-28, If[Binomial[c25-29,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-29, If[Binomial[c25-30,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-30, If[Binomial[c25-31,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-31, If[Binomial[c25-32,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-32, If[Binomial[c25-33,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-33, If[Binomial[c25-34,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-34, If[Binomial[c25-35,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-35, If[Binomial[c25-36,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-36, If[Binomial[c25-37,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-37, If[Binomial[c25-38,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-38, If[Binomial[c25-39,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-39, If[Binomial[c25-40,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-40, If[Binomial[c25-41,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-41, If[Binomial[c25-42,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-42, If[Binomial[c25-43,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-43, If[Binomial[c25-44,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-44, If[Binomial[c25-45,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-45, If[Binomial[c25-46,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-46, If[Binomial[c25-47,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-47, If[Binomial[c25-48,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-48, If[Binomial[c25-49,25]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26],c25-49, 24]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c27=If[Binomial[c26-1,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-1, If[Binomial[c26-2,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-2, If[Binomial[c26-3,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-3, If[Binomial[c26-4,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-4, If[Binomial[c26-5,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-5, If[Binomial[c26-6,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-6, If[Binomial[c26-7,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-7, If[Binomial[c26-8,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-8, If[Binomial[c26-9,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-9, If[Binomial[c26-10,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-10, If[Binomial[c26-11,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-11, If[Binomial[c26-12,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-12, If[Binomial[c26-13,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-13, If[Binomial[c26-14,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-14, If[Binomial[c26-15,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-15, If[Binomial[c26-16,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-16, If[Binomial[c26-17,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-17, If[Binomial[c26-18,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-18, If[Binomial[c26-19,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-19, If[Binomial[c26-20,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-20, If[Binomial[c26-21,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-21, If[Binomial[c26-22,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-22, If[Binomial[c26-23,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-23, If[Binomial[c26-24,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-24, If[Binomial[c26-25,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-25, If[Binomial[c26-26,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-26, If[Binomial[c26-27,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-27, If[Binomial[c26-28,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-28, If[Binomial[c26-29,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-29, If[Binomial[c26-30,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-30, If[Binomial[c26-31,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-31, If[Binomial[c26-32,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-32, If[Binomial[c26-33,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-33, If[Binomial[c26-34,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-34, If[Binomial[c26-35,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-35, If[Binomial[c26-36,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-36, If[Binomial[c26-37,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-37, If[Binomial[c26-38,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-38, If[Binomial[c26-39,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-39, If[Binomial[c26-40,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-40, If[Binomial[c26-41,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-41, If[Binomial[c26-42,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-42, If[Binomial[c26-43,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-43, If[Binomial[c26-44,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-44, If[Binomial[c26-45,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-45, If[Binomial[c26-46,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-46, If[Binomial[c26-47,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-47, If[Binomial[c26-48,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-48, If[Binomial[c26-49,24]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25],c26-49, 23]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c28=If[Binomial[c27-1,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-1, If[Binomial[c27-2,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-2, If[Binomial[c27-3,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-3, If[Binomial[c27-4,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-4, If[Binomial[c27-5,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-5, If[Binomial[c27-6,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-6, If[Binomial[c27-7,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-7, If[Binomial[c27-8,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-8, If[Binomial[c27-9,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-9, If[Binomial[c27-10,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-10, If[Binomial[c27-11,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-11, If[Binomial[c27-12,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-12, If[Binomial[c27-13,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-13, If[Binomial[c27-14,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-14, If[Binomial[c27-15,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-15, If[Binomial[c27-16,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-16, If[Binomial[c27-17,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-17, If[Binomial[c27-18,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-18, If[Binomial[c27-19,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-19, If[Binomial[c27-20,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-20, If[Binomial[c27-21,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-21, If[Binomial[c27-22,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-22, If[Binomial[c27-23,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-23, If[Binomial[c27-24,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-24, If[Binomial[c27-25,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-25, If[Binomial[c27-26,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-26, If[Binomial[c27-27,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-27, If[Binomial[c27-28,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-28, If[Binomial[c27-29,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-29, If[Binomial[c27-30,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-30, If[Binomial[c27-31,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-31, If[Binomial[c27-32,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-32, If[Binomial[c27-33,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-33, If[Binomial[c27-34,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-34, If[Binomial[c27-35,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-35, If[Binomial[c27-36,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-36, If[Binomial[c27-37,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-37, If[Binomial[c27-38,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-38, If[Binomial[c27-39,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-39, If[Binomial[c27-40,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-40, If[Binomial[c27-41,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-41, If[Binomial[c27-42,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-42, If[Binomial[c27-43,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-43, If[Binomial[c27-44,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-44, If[Binomial[c27-45,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-45, If[Binomial[c27-46,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-46, If[Binomial[c27-47,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-47, If[Binomial[c27-48,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-48, If[Binomial[c27-49,23]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24],c27-49, 22]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c29=If[Binomial[c28-1,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-1, If[Binomial[c28-2,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-2, If[Binomial[c28-3,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-3, If[Binomial[c28-4,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-4, If[Binomial[c28-5,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-5, If[Binomial[c28-6,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-6, If[Binomial[c28-7,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-7, If[Binomial[c28-8,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-8, If[Binomial[c28-9,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-9, If[Binomial[c28-10,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-10, If[Binomial[c28-11,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-11, If[Binomial[c28-12,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-12, If[Binomial[c28-13,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-13, If[Binomial[c28-14,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-14, If[Binomial[c28-15,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-15, If[Binomial[c28-16,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-16, If[Binomial[c28-17,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-17, If[Binomial[c28-18,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-18, If[Binomial[c28-19,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-19, If[Binomial[c28-20,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-20, If[Binomial[c28-21,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-21, If[Binomial[c28-22,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-22, If[Binomial[c28-23,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-23, If[Binomial[c28-24,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-24, If[Binomial[c28-25,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-25, If[Binomial[c28-26,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-26, If[Binomial[c28-27,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-27, If[Binomial[c28-28,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-28, If[Binomial[c28-29,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-29, If[Binomial[c28-30,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-30, If[Binomial[c28-31,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-31, If[Binomial[c28-32,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-32, If[Binomial[c28-33,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-33, If[Binomial[c28-34,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-34, If[Binomial[c28-35,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-35, If[Binomial[c28-36,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-36, If[Binomial[c28-37,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-37, If[Binomial[c28-38,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-38, If[Binomial[c28-39,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-39, If[Binomial[c28-40,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-40, If[Binomial[c28-41,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-41, If[Binomial[c28-42,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-42, If[Binomial[c28-43,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-43, If[Binomial[c28-44,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-44, If[Binomial[c28-45,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-45, If[Binomial[c28-46,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-46, If[Binomial[c28-47,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-47, If[Binomial[c28-48,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-48, If[Binomial[c28-49,22]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23],c28-49, 21]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c30=If[Binomial[c29-1,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-1, If[Binomial[c29-2,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-2, If[Binomial[c29-3,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-3, If[Binomial[c29-4,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-4, If[Binomial[c29-5,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-5, If[Binomial[c29-6,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-6, If[Binomial[c29-7,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-7, If[Binomial[c29-8,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-8, If[Binomial[c29-9,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-9, If[Binomial[c29-10,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-10, If[Binomial[c29-11,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-11, If[Binomial[c29-12,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-12, If[Binomial[c29-13,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-13, If[Binomial[c29-14,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-14, If[Binomial[c29-15,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-15, If[Binomial[c29-16,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-16, If[Binomial[c29-17,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-17, If[Binomial[c29-18,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-18, If[Binomial[c29-19,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-19, If[Binomial[c29-20,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-20, If[Binomial[c29-21,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-21, If[Binomial[c29-22,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-22, If[Binomial[c29-23,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-23, If[Binomial[c29-24,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-24, If[Binomial[c29-25,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-25, If[Binomial[c29-26,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-26, If[Binomial[c29-27,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-27, If[Binomial[c29-28,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-28, If[Binomial[c29-29,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-29, If[Binomial[c29-30,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-30, If[Binomial[c29-31,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-31, If[Binomial[c29-32,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-32, If[Binomial[c29-33,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-33, If[Binomial[c29-34,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-34, If[Binomial[c29-35,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-35, If[Binomial[c29-36,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-36, If[Binomial[c29-37,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-37, If[Binomial[c29-38,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-38, If[Binomial[c29-39,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-39, If[Binomial[c29-40,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-40, If[Binomial[c29-41,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-41, If[Binomial[c29-42,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-42, If[Binomial[c29-43,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-43, If[Binomial[c29-44,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-44, If[Binomial[c29-45,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-45, If[Binomial[c29-46,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-46, If[Binomial[c29-47,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-47, If[Binomial[c29-48,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-48, If[Binomial[c29-49,21]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22],c29-49, 20]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c31=If[Binomial[c30-1,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-1, If[Binomial[c30-2,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-2, If[Binomial[c30-3,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-3, If[Binomial[c30-4,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-4, If[Binomial[c30-5,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-5, If[Binomial[c30-6,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-6, If[Binomial[c30-7,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-7, If[Binomial[c30-8,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-8, If[Binomial[c30-9,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-9, If[Binomial[c30-10,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-10, If[Binomial[c30-11,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-11, If[Binomial[c30-12,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-12, If[Binomial[c30-13,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-13, If[Binomial[c30-14,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-14, If[Binomial[c30-15,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-15, If[Binomial[c30-16,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-16, If[Binomial[c30-17,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-17, If[Binomial[c30-18,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-18, If[Binomial[c30-19,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-19, If[Binomial[c30-20,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-20, If[Binomial[c30-21,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-21, If[Binomial[c30-22,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-22, If[Binomial[c30-23,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-23, If[Binomial[c30-24,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-24, If[Binomial[c30-25,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-25, If[Binomial[c30-26,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-26, If[Binomial[c30-27,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-27, If[Binomial[c30-28,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-28, If[Binomial[c30-29,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-29, If[Binomial[c30-30,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-30, If[Binomial[c30-31,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-31, If[Binomial[c30-32,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-32, If[Binomial[c30-33,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-33, If[Binomial[c30-34,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-34, If[Binomial[c30-35,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-35, If[Binomial[c30-36,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-36, If[Binomial[c30-37,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-37, If[Binomial[c30-38,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-38, If[Binomial[c30-39,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-39, If[Binomial[c30-40,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-40, If[Binomial[c30-41,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-41, If[Binomial[c30-42,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-42, If[Binomial[c30-43,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-43, If[Binomial[c30-44,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-44, If[Binomial[c30-45,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-45, If[Binomial[c30-46,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-46, If[Binomial[c30-47,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-47, If[Binomial[c30-48,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-48, If[Binomial[c30-49,20]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21],c30-49, 19]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c32=If[Binomial[c31-1,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-1, If[Binomial[c31-2,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-2, If[Binomial[c31-3,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-3, If[Binomial[c31-4,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-4, If[Binomial[c31-5,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-5, If[Binomial[c31-6,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-6, If[Binomial[c31-7,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-7, If[Binomial[c31-8,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-8, If[Binomial[c31-9,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-9, If[Binomial[c31-10,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-10, If[Binomial[c31-11,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-11, If[Binomial[c31-12,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-12, If[Binomial[c31-13,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-13, If[Binomial[c31-14,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-14, If[Binomial[c31-15,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-15, If[Binomial[c31-16,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-16, If[Binomial[c31-17,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-17, If[Binomial[c31-18,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-18, If[Binomial[c31-19,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-19, If[Binomial[c31-20,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-20, If[Binomial[c31-21,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-21, If[Binomial[c31-22,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-22, If[Binomial[c31-23,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-23, If[Binomial[c31-24,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-24, If[Binomial[c31-25,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-25, If[Binomial[c31-26,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-26, If[Binomial[c31-27,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-27, If[Binomial[c31-28,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-28, If[Binomial[c31-29,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-29, If[Binomial[c31-30,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-30, If[Binomial[c31-31,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-31, If[Binomial[c31-32,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-32, If[Binomial[c31-33,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-33, If[Binomial[c31-34,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-34, If[Binomial[c31-35,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-35, If[Binomial[c31-36,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-36, If[Binomial[c31-37,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-37, If[Binomial[c31-38,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-38, If[Binomial[c31-39,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-39, If[Binomial[c31-40,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-40, If[Binomial[c31-41,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-41, If[Binomial[c31-42,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-42, If[Binomial[c31-43,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-43, If[Binomial[c31-44,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-44, If[Binomial[c31-45,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-45, If[Binomial[c31-46,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-46, If[Binomial[c31-47,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-47, If[Binomial[c31-48,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-48, If[Binomial[c31-49,19]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20],c31-49, 18]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c33=If[Binomial[c32-1,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-1, If[Binomial[c32-2,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-2, If[Binomial[c32-3,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-3, If[Binomial[c32-4,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-4, If[Binomial[c32-5,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-5, If[Binomial[c32-6,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-6, If[Binomial[c32-7,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-7, If[Binomial[c32-8,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-8, If[Binomial[c32-9,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-9, If[Binomial[c32-10,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-10, If[Binomial[c32-11,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-11, If[Binomial[c32-12,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-12, If[Binomial[c32-13,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-13, If[Binomial[c32-14,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-14, If[Binomial[c32-15,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-15, If[Binomial[c32-16,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-16, If[Binomial[c32-17,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-17, If[Binomial[c32-18,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-18, If[Binomial[c32-19,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-19, If[Binomial[c32-20,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-20, If[Binomial[c32-21,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-21, If[Binomial[c32-22,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-22, If[Binomial[c32-23,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-23, If[Binomial[c32-24,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-24, If[Binomial[c32-25,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-25, If[Binomial[c32-26,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-26, If[Binomial[c32-27,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-27, If[Binomial[c32-28,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-28, If[Binomial[c32-29,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-29, If[Binomial[c32-30,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-30, If[Binomial[c32-31,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-31, If[Binomial[c32-32,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-32, If[Binomial[c32-33,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-33, If[Binomial[c32-34,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-34, If[Binomial[c32-35,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-35, If[Binomial[c32-36,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-36, If[Binomial[c32-37,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-37, If[Binomial[c32-38,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-38, If[Binomial[c32-39,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-39, If[Binomial[c32-40,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-40, If[Binomial[c32-41,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-41, If[Binomial[c32-42,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-42, If[Binomial[c32-43,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-43, If[Binomial[c32-44,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-44, If[Binomial[c32-45,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-45, If[Binomial[c32-46,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-46, If[Binomial[c32-47,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-47, If[Binomial[c32-48,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-48, If[Binomial[c32-49,18]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19],c32-49, 17]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c34=If[Binomial[c33-1,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-1, If[Binomial[c33-2,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-2, If[Binomial[c33-3,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-3, If[Binomial[c33-4,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-4, If[Binomial[c33-5,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-5, If[Binomial[c33-6,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-6, If[Binomial[c33-7,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-7, If[Binomial[c33-8,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-8, If[Binomial[c33-9,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-9, If[Binomial[c33-10,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-10, If[Binomial[c33-11,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-11, If[Binomial[c33-12,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-12, If[Binomial[c33-13,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-13, If[Binomial[c33-14,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-14, If[Binomial[c33-15,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-15, If[Binomial[c33-16,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-16, If[Binomial[c33-17,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-17, If[Binomial[c33-18,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-18, If[Binomial[c33-19,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-19, If[Binomial[c33-20,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-20, If[Binomial[c33-21,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-21, If[Binomial[c33-22,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-22, If[Binomial[c33-23,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-23, If[Binomial[c33-24,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-24, If[Binomial[c33-25,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-25, If[Binomial[c33-26,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-26, If[Binomial[c33-27,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-27, If[Binomial[c33-28,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-28, If[Binomial[c33-29,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-29, If[Binomial[c33-30,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-30, If[Binomial[c33-31,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-31, If[Binomial[c33-32,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-32, If[Binomial[c33-33,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-33, If[Binomial[c33-34,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-34, If[Binomial[c33-35,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-35, If[Binomial[c33-36,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-36, If[Binomial[c33-37,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-37, If[Binomial[c33-38,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-38, If[Binomial[c33-39,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-39, If[Binomial[c33-40,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-40, If[Binomial[c33-41,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-41, If[Binomial[c33-42,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-42, If[Binomial[c33-43,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-43, If[Binomial[c33-44,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-44, If[Binomial[c33-45,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-45, If[Binomial[c33-46,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-46, If[Binomial[c33-47,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-47, If[Binomial[c33-48,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-48, If[Binomial[c33-49,17]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18],c33-49, 16]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c35=If[Binomial[c34-1,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-1, If[Binomial[c34-2,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-2, If[Binomial[c34-3,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-3, If[Binomial[c34-4,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-4, If[Binomial[c34-5,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-5, If[Binomial[c34-6,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-6, If[Binomial[c34-7,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-7, If[Binomial[c34-8,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-8, If[Binomial[c34-9,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-9, If[Binomial[c34-10,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-10, If[Binomial[c34-11,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-11, If[Binomial[c34-12,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-12, If[Binomial[c34-13,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-13, If[Binomial[c34-14,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-14, If[Binomial[c34-15,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-15, If[Binomial[c34-16,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-16, If[Binomial[c34-17,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-17, If[Binomial[c34-18,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-18, If[Binomial[c34-19,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-19, If[Binomial[c34-20,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-20, If[Binomial[c34-21,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-21, If[Binomial[c34-22,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-22, If[Binomial[c34-23,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-23, If[Binomial[c34-24,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-24, If[Binomial[c34-25,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-25, If[Binomial[c34-26,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-26, If[Binomial[c34-27,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-27, If[Binomial[c34-28,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-28, If[Binomial[c34-29,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-29, If[Binomial[c34-30,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-30, If[Binomial[c34-31,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-31, If[Binomial[c34-32,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-32, If[Binomial[c34-33,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-33, If[Binomial[c34-34,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-34, If[Binomial[c34-35,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-35, If[Binomial[c34-36,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-36, If[Binomial[c34-37,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-37, If[Binomial[c34-38,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-38, If[Binomial[c34-39,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-39, If[Binomial[c34-40,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-40, If[Binomial[c34-41,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-41, If[Binomial[c34-42,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-42, If[Binomial[c34-43,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-43, If[Binomial[c34-44,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-44, If[Binomial[c34-45,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-45, If[Binomial[c34-46,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-46, If[Binomial[c34-47,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-47, If[Binomial[c34-48,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-48, If[Binomial[c34-49,16]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17],c34-49, 15]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c36=If[Binomial[c35-1,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-1, If[Binomial[c35-2,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-2, If[Binomial[c35-3,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-3, If[Binomial[c35-4,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-4, If[Binomial[c35-5,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-5, If[Binomial[c35-6,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-6, If[Binomial[c35-7,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-7, If[Binomial[c35-8,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-8, If[Binomial[c35-9,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-9, If[Binomial[c35-10,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-10, If[Binomial[c35-11,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-11, If[Binomial[c35-12,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-12, If[Binomial[c35-13,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-13, If[Binomial[c35-14,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-14, If[Binomial[c35-15,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-15, If[Binomial[c35-16,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-16, If[Binomial[c35-17,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-17, If[Binomial[c35-18,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-18, If[Binomial[c35-19,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-19, If[Binomial[c35-20,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-20, If[Binomial[c35-21,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-21, If[Binomial[c35-22,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-22, If[Binomial[c35-23,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-23, If[Binomial[c35-24,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-24, If[Binomial[c35-25,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-25, If[Binomial[c35-26,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-26, If[Binomial[c35-27,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-27, If[Binomial[c35-28,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-28, If[Binomial[c35-29,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-29, If[Binomial[c35-30,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-30, If[Binomial[c35-31,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-31, If[Binomial[c35-32,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-32, If[Binomial[c35-33,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-33, If[Binomial[c35-34,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-34, If[Binomial[c35-35,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-35, If[Binomial[c35-36,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-36, If[Binomial[c35-37,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-37, If[Binomial[c35-38,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-38, If[Binomial[c35-39,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-39, If[Binomial[c35-40,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-40, If[Binomial[c35-41,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-41, If[Binomial[c35-42,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-42, If[Binomial[c35-43,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-43, If[Binomial[c35-44,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-44, If[Binomial[c35-45,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-45, If[Binomial[c35-46,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-46, If[Binomial[c35-47,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-47, If[Binomial[c35-48,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-48, If[Binomial[c35-49,15]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16],c35-49, 14]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c37=If[Binomial[c36-1,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-1, If[Binomial[c36-2,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-2, If[Binomial[c36-3,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-3, If[Binomial[c36-4,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-4, If[Binomial[c36-5,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-5, If[Binomial[c36-6,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-6, If[Binomial[c36-7,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-7, If[Binomial[c36-8,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-8, If[Binomial[c36-9,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-9, If[Binomial[c36-10,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-10, If[Binomial[c36-11,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-11, If[Binomial[c36-12,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-12, If[Binomial[c36-13,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-13, If[Binomial[c36-14,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-14, If[Binomial[c36-15,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-15, If[Binomial[c36-16,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-16, If[Binomial[c36-17,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-17, If[Binomial[c36-18,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-18, If[Binomial[c36-19,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-19, If[Binomial[c36-20,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-20, If[Binomial[c36-21,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-21, If[Binomial[c36-22,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-22, If[Binomial[c36-23,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-23, If[Binomial[c36-24,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-24, If[Binomial[c36-25,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-25, If[Binomial[c36-26,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-26, If[Binomial[c36-27,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-27, If[Binomial[c36-28,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-28, If[Binomial[c36-29,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-29, If[Binomial[c36-30,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-30, If[Binomial[c36-31,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-31, If[Binomial[c36-32,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-32, If[Binomial[c36-33,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-33, If[Binomial[c36-34,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-34, If[Binomial[c36-35,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-35, If[Binomial[c36-36,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-36, If[Binomial[c36-37,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-37, If[Binomial[c36-38,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-38, If[Binomial[c36-39,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-39, If[Binomial[c36-40,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-40, If[Binomial[c36-41,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-41, If[Binomial[c36-42,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-42, If[Binomial[c36-43,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-43, If[Binomial[c36-44,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-44, If[Binomial[c36-45,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-45, If[Binomial[c36-46,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-46, If[Binomial[c36-47,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-47, If[Binomial[c36-48,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-48, If[Binomial[c36-49,14]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15],c36-49, 13]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c38=If[Binomial[c37-1,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-1, If[Binomial[c37-2,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-2, If[Binomial[c37-3,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-3, If[Binomial[c37-4,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-4, If[Binomial[c37-5,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-5, If[Binomial[c37-6,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-6, If[Binomial[c37-7,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-7, If[Binomial[c37-8,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-8, If[Binomial[c37-9,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-9, If[Binomial[c37-10,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-10, If[Binomial[c37-11,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-11, If[Binomial[c37-12,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-12, If[Binomial[c37-13,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-13, If[Binomial[c37-14,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-14, If[Binomial[c37-15,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-15, If[Binomial[c37-16,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-16, If[Binomial[c37-17,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-17, If[Binomial[c37-18,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-18, If[Binomial[c37-19,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-19, If[Binomial[c37-20,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-20, If[Binomial[c37-21,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-21, If[Binomial[c37-22,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-22, If[Binomial[c37-23,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-23, If[Binomial[c37-24,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-24, If[Binomial[c37-25,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-25, If[Binomial[c37-26,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-26, If[Binomial[c37-27,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-27, If[Binomial[c37-28,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-28, If[Binomial[c37-29,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-29, If[Binomial[c37-30,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-30, If[Binomial[c37-31,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-31, If[Binomial[c37-32,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-32, If[Binomial[c37-33,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-33, If[Binomial[c37-34,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-34, If[Binomial[c37-35,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-35, If[Binomial[c37-36,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-36, If[Binomial[c37-37,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-37, If[Binomial[c37-38,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-38, If[Binomial[c37-39,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-39, If[Binomial[c37-40,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-40, If[Binomial[c37-41,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-41, If[Binomial[c37-42,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-42, If[Binomial[c37-43,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-43, If[Binomial[c37-44,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-44, If[Binomial[c37-45,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-45, If[Binomial[c37-46,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-46, If[Binomial[c37-47,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-47, If[Binomial[c37-48,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-48, If[Binomial[c37-49,13]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14],c37-49, 12]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c39=If[Binomial[c38-1,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-1, If[Binomial[c38-2,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-2, If[Binomial[c38-3,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-3, If[Binomial[c38-4,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-4, If[Binomial[c38-5,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-5, If[Binomial[c38-6,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-6, If[Binomial[c38-7,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-7, If[Binomial[c38-8,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-8, If[Binomial[c38-9,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-9, If[Binomial[c38-10,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-10, If[Binomial[c38-11,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-11, If[Binomial[c38-12,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-12, If[Binomial[c38-13,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-13, If[Binomial[c38-14,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-14, If[Binomial[c38-15,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-15, If[Binomial[c38-16,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-16, If[Binomial[c38-17,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-17, If[Binomial[c38-18,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-18, If[Binomial[c38-19,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-19, If[Binomial[c38-20,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-20, If[Binomial[c38-21,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-21, If[Binomial[c38-22,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-22, If[Binomial[c38-23,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-23, If[Binomial[c38-24,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-24, If[Binomial[c38-25,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-25, If[Binomial[c38-26,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-26, If[Binomial[c38-27,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-27, If[Binomial[c38-28,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-28, If[Binomial[c38-29,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-29, If[Binomial[c38-30,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-30, If[Binomial[c38-31,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-31, If[Binomial[c38-32,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-32, If[Binomial[c38-33,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-33, If[Binomial[c38-34,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-34, If[Binomial[c38-35,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-35, If[Binomial[c38-36,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-36, If[Binomial[c38-37,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-37, If[Binomial[c38-38,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-38, If[Binomial[c38-39,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-39, If[Binomial[c38-40,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-40, If[Binomial[c38-41,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-41, If[Binomial[c38-42,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-42, If[Binomial[c38-43,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-43, If[Binomial[c38-44,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-44, If[Binomial[c38-45,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-45, If[Binomial[c38-46,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-46, If[Binomial[c38-47,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-47, If[Binomial[c38-48,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-48, If[Binomial[c38-49,12]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13],c38-49, 11]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c40=If[Binomial[c39-1,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-1, If[Binomial[c39-2,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-2, If[Binomial[c39-3,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-3, If[Binomial[c39-4,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-4, If[Binomial[c39-5,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-5, If[Binomial[c39-6,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-6, If[Binomial[c39-7,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-7, If[Binomial[c39-8,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-8, If[Binomial[c39-9,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-9, If[Binomial[c39-10,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-10, If[Binomial[c39-11,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-11, If[Binomial[c39-12,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-12, If[Binomial[c39-13,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-13, If[Binomial[c39-14,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-14, If[Binomial[c39-15,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-15, If[Binomial[c39-16,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-16, If[Binomial[c39-17,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-17, If[Binomial[c39-18,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-18, If[Binomial[c39-19,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-19, If[Binomial[c39-20,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-20, If[Binomial[c39-21,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-21, If[Binomial[c39-22,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-22, If[Binomial[c39-23,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-23, If[Binomial[c39-24,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-24, If[Binomial[c39-25,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-25, If[Binomial[c39-26,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-26, If[Binomial[c39-27,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-27, If[Binomial[c39-28,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-28, If[Binomial[c39-29,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-29, If[Binomial[c39-30,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-30, If[Binomial[c39-31,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-31, If[Binomial[c39-32,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-32, If[Binomial[c39-33,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-33, If[Binomial[c39-34,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-34, If[Binomial[c39-35,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-35, If[Binomial[c39-36,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-36, If[Binomial[c39-37,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-37, If[Binomial[c39-38,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-38, If[Binomial[c39-39,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-39, If[Binomial[c39-40,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-40, If[Binomial[c39-41,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-41, If[Binomial[c39-42,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-42, If[Binomial[c39-43,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-43, If[Binomial[c39-44,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-44, If[Binomial[c39-45,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-45, If[Binomial[c39-46,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-46, If[Binomial[c39-47,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-47, If[Binomial[c39-48,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-48, If[Binomial[c39-49,11]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12],c39-49, 10]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c41=If[Binomial[c40-1,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-1, If[Binomial[c40-2,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-2, If[Binomial[c40-3,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-3, If[Binomial[c40-4,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-4, If[Binomial[c40-5,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-5, If[Binomial[c40-6,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-6, If[Binomial[c40-7,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-7, If[Binomial[c40-8,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-8, If[Binomial[c40-9,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-9, If[Binomial[c40-10,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-10, If[Binomial[c40-11,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-11, If[Binomial[c40-12,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-12, If[Binomial[c40-13,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-13, If[Binomial[c40-14,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-14, If[Binomial[c40-15,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-15, If[Binomial[c40-16,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-16, If[Binomial[c40-17,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-17, If[Binomial[c40-18,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-18, If[Binomial[c40-19,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-19, If[Binomial[c40-20,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-20, If[Binomial[c40-21,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-21, If[Binomial[c40-22,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-22, If[Binomial[c40-23,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-23, If[Binomial[c40-24,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-24, If[Binomial[c40-25,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-25, If[Binomial[c40-26,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-26, If[Binomial[c40-27,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-27, If[Binomial[c40-28,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-28, If[Binomial[c40-29,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-29, If[Binomial[c40-30,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-30, If[Binomial[c40-31,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-31, If[Binomial[c40-32,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-32, If[Binomial[c40-33,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-33, If[Binomial[c40-34,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-34, If[Binomial[c40-35,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-35, If[Binomial[c40-36,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-36, If[Binomial[c40-37,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-37, If[Binomial[c40-38,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-38, If[Binomial[c40-39,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-39, If[Binomial[c40-40,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-40, If[Binomial[c40-41,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-41, If[Binomial[c40-42,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-42, If[Binomial[c40-43,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-43, If[Binomial[c40-44,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-44, If[Binomial[c40-45,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-45, If[Binomial[c40-46,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-46, If[Binomial[c40-47,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-47, If[Binomial[c40-48,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-48, If[Binomial[c40-49,10]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11],c40-49, 9]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c42=If[Binomial[c41-1,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-1, If[Binomial[c41-2,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-2, If[Binomial[c41-3,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-3, If[Binomial[c41-4,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-4, If[Binomial[c41-5,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-5, If[Binomial[c41-6,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-6, If[Binomial[c41-7,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-7, If[Binomial[c41-8,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-8, If[Binomial[c41-9,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-9, If[Binomial[c41-10,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-10, If[Binomial[c41-11,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-11, If[Binomial[c41-12,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-12, If[Binomial[c41-13,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-13, If[Binomial[c41-14,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-14, If[Binomial[c41-15,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-15, If[Binomial[c41-16,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-16, If[Binomial[c41-17,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-17, If[Binomial[c41-18,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-18, If[Binomial[c41-19,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-19, If[Binomial[c41-20,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-20, If[Binomial[c41-21,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-21, If[Binomial[c41-22,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-22, If[Binomial[c41-23,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-23, If[Binomial[c41-24,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-24, If[Binomial[c41-25,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-25, If[Binomial[c41-26,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-26, If[Binomial[c41-27,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-27, If[Binomial[c41-28,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-28, If[Binomial[c41-29,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-29, If[Binomial[c41-30,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-30, If[Binomial[c41-31,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-31, If[Binomial[c41-32,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-32, If[Binomial[c41-33,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-33, If[Binomial[c41-34,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-34, If[Binomial[c41-35,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-35, If[Binomial[c41-36,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-36, If[Binomial[c41-37,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-37, If[Binomial[c41-38,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-38, If[Binomial[c41-39,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-39, If[Binomial[c41-40,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-40, If[Binomial[c41-41,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-41, If[Binomial[c41-42,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-42, If[Binomial[c41-43,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-43, If[Binomial[c41-44,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-44, If[Binomial[c41-45,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-45, If[Binomial[c41-46,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-46, If[Binomial[c41-47,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-47, If[Binomial[c41-48,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-48, If[Binomial[c41-49,9]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10],c41-49, 8]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c43=If[Binomial[c42-1,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-1, If[Binomial[c42-2,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-2, If[Binomial[c42-3,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-3, If[Binomial[c42-4,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-4, If[Binomial[c42-5,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-5, If[Binomial[c42-6,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-6, If[Binomial[c42-7,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-7, If[Binomial[c42-8,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-8, If[Binomial[c42-9,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-9, If[Binomial[c42-10,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-10, If[Binomial[c42-11,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-11, If[Binomial[c42-12,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-12, If[Binomial[c42-13,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-13, If[Binomial[c42-14,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-14, If[Binomial[c42-15,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-15, If[Binomial[c42-16,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-16, If[Binomial[c42-17,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-17, If[Binomial[c42-18,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-18, If[Binomial[c42-19,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-19, If[Binomial[c42-20,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-20, If[Binomial[c42-21,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-21, If[Binomial[c42-22,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-22, If[Binomial[c42-23,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-23, If[Binomial[c42-24,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-24, If[Binomial[c42-25,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-25, If[Binomial[c42-26,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-26, If[Binomial[c42-27,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-27, If[Binomial[c42-28,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-28, If[Binomial[c42-29,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-29, If[Binomial[c42-30,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-30, If[Binomial[c42-31,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-31, If[Binomial[c42-32,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-32, If[Binomial[c42-33,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-33, If[Binomial[c42-34,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-34, If[Binomial[c42-35,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-35, If[Binomial[c42-36,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-36, If[Binomial[c42-37,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-37, If[Binomial[c42-38,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-38, If[Binomial[c42-39,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-39, If[Binomial[c42-40,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-40, If[Binomial[c42-41,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-41, If[Binomial[c42-42,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-42, If[Binomial[c42-43,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-43, If[Binomial[c42-44,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-44, If[Binomial[c42-45,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-45, If[Binomial[c42-46,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-46, If[Binomial[c42-47,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-47, If[Binomial[c42-48,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-48, If[Binomial[c42-49,8]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9],c42-49, 7]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c44=If[Binomial[c43-1,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-1, If[Binomial[c43-2,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-2, If[Binomial[c43-3,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-3, If[Binomial[c43-4,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-4, If[Binomial[c43-5,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-5, If[Binomial[c43-6,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-6, If[Binomial[c43-7,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-7, If[Binomial[c43-8,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-8, If[Binomial[c43-9,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-9, If[Binomial[c43-10,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-10, If[Binomial[c43-11,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-11, If[Binomial[c43-12,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-12, If[Binomial[c43-13,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-13, If[Binomial[c43-14,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-14, If[Binomial[c43-15,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-15, If[Binomial[c43-16,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-16, If[Binomial[c43-17,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-17, If[Binomial[c43-18,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-18, If[Binomial[c43-19,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-19, If[Binomial[c43-20,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-20, If[Binomial[c43-21,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-21, If[Binomial[c43-22,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-22, If[Binomial[c43-23,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-23, If[Binomial[c43-24,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-24, If[Binomial[c43-25,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-25, If[Binomial[c43-26,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-26, If[Binomial[c43-27,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-27, If[Binomial[c43-28,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-28, If[Binomial[c43-29,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-29, If[Binomial[c43-30,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-30, If[Binomial[c43-31,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-31, If[Binomial[c43-32,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-32, If[Binomial[c43-33,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-33, If[Binomial[c43-34,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-34, If[Binomial[c43-35,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-35, If[Binomial[c43-36,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-36, If[Binomial[c43-37,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-37, If[Binomial[c43-38,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-38, If[Binomial[c43-39,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-39, If[Binomial[c43-40,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-40, If[Binomial[c43-41,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-41, If[Binomial[c43-42,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-42, If[Binomial[c43-43,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-43, If[Binomial[c43-44,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-44, If[Binomial[c43-45,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-45, If[Binomial[c43-46,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-46, If[Binomial[c43-47,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-47, If[Binomial[c43-48,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-48, If[Binomial[c43-49,7]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8],c43-49, 6]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c45=If[Binomial[c44-1,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-1, If[Binomial[c44-2,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-2, If[Binomial[c44-3,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-3, If[Binomial[c44-4,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-4, If[Binomial[c44-5,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-5, If[Binomial[c44-6,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-6, If[Binomial[c44-7,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-7, If[Binomial[c44-8,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-8, If[Binomial[c44-9,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-9, If[Binomial[c44-10,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-10, If[Binomial[c44-11,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-11, If[Binomial[c44-12,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-12, If[Binomial[c44-13,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-13, If[Binomial[c44-14,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-14, If[Binomial[c44-15,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-15, If[Binomial[c44-16,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-16, If[Binomial[c44-17,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-17, If[Binomial[c44-18,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-18, If[Binomial[c44-19,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-19, If[Binomial[c44-20,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-20, If[Binomial[c44-21,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-21, If[Binomial[c44-22,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-22, If[Binomial[c44-23,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-23, If[Binomial[c44-24,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-24, If[Binomial[c44-25,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-25, If[Binomial[c44-26,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-26, If[Binomial[c44-27,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-27, If[Binomial[c44-28,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-28, If[Binomial[c44-29,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-29, If[Binomial[c44-30,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-30, If[Binomial[c44-31,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-31, If[Binomial[c44-32,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-32, If[Binomial[c44-33,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-33, If[Binomial[c44-34,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-34, If[Binomial[c44-35,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-35, If[Binomial[c44-36,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-36, If[Binomial[c44-37,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-37, If[Binomial[c44-38,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-38, If[Binomial[c44-39,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-39, If[Binomial[c44-40,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-40, If[Binomial[c44-41,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-41, If[Binomial[c44-42,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-42, If[Binomial[c44-43,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-43, If[Binomial[c44-44,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-44, If[Binomial[c44-45,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-45, If[Binomial[c44-46,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-46, If[Binomial[c44-47,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-47, If[Binomial[c44-48,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-48, If[Binomial[c44-49,6]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7],c44-49, 5]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c46=If[Binomial[c45-1,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-1, If[Binomial[c45-2,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-2, If[Binomial[c45-3,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-3, If[Binomial[c45-4,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-4, If[Binomial[c45-5,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-5, If[Binomial[c45-6,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-6, If[Binomial[c45-7,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-7, If[Binomial[c45-8,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-8, If[Binomial[c45-9,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-9, If[Binomial[c45-10,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-10, If[Binomial[c45-11,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-11, If[Binomial[c45-12,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-12, If[Binomial[c45-13,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-13, If[Binomial[c45-14,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-14, If[Binomial[c45-15,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-15, If[Binomial[c45-16,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-16, If[Binomial[c45-17,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-17, If[Binomial[c45-18,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-18, If[Binomial[c45-19,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-19, If[Binomial[c45-20,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-20, If[Binomial[c45-21,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-21, If[Binomial[c45-22,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-22, If[Binomial[c45-23,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-23, If[Binomial[c45-24,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-24, If[Binomial[c45-25,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-25, If[Binomial[c45-26,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-26, If[Binomial[c45-27,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-27, If[Binomial[c45-28,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-28, If[Binomial[c45-29,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-29, If[Binomial[c45-30,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-30, If[Binomial[c45-31,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-31, If[Binomial[c45-32,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-32, If[Binomial[c45-33,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-33, If[Binomial[c45-34,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-34, If[Binomial[c45-35,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-35, If[Binomial[c45-36,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-36, If[Binomial[c45-37,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-37, If[Binomial[c45-38,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-38, If[Binomial[c45-39,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-39, If[Binomial[c45-40,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-40, If[Binomial[c45-41,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-41, If[Binomial[c45-42,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-42, If[Binomial[c45-43,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-43, If[Binomial[c45-44,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-44, If[Binomial[c45-45,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-45, If[Binomial[c45-46,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-46, If[Binomial[c45-47,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-47, If[Binomial[c45-48,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-48, If[Binomial[c45-49,5]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6],c45-49, 4]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c47=If[Binomial[c46-1,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-1, If[Binomial[c46-2,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-2, If[Binomial[c46-3,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-3, If[Binomial[c46-4,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-4, If[Binomial[c46-5,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-5, If[Binomial[c46-6,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-6, If[Binomial[c46-7,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-7, If[Binomial[c46-8,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-8, If[Binomial[c46-9,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-9, If[Binomial[c46-10,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-10, If[Binomial[c46-11,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-11, If[Binomial[c46-12,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-12, If[Binomial[c46-13,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-13, If[Binomial[c46-14,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-14, If[Binomial[c46-15,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-15, If[Binomial[c46-16,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-16, If[Binomial[c46-17,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-17, If[Binomial[c46-18,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-18, If[Binomial[c46-19,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-19, If[Binomial[c46-20,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-20, If[Binomial[c46-21,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-21, If[Binomial[c46-22,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-22, If[Binomial[c46-23,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-23, If[Binomial[c46-24,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-24, If[Binomial[c46-25,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-25, If[Binomial[c46-26,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-26, If[Binomial[c46-27,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-27, If[Binomial[c46-28,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-28, If[Binomial[c46-29,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-29, If[Binomial[c46-30,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-30, If[Binomial[c46-31,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-31, If[Binomial[c46-32,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-32, If[Binomial[c46-33,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-33, If[Binomial[c46-34,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-34, If[Binomial[c46-35,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-35, If[Binomial[c46-36,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-36, If[Binomial[c46-37,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-37, If[Binomial[c46-38,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-38, If[Binomial[c46-39,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-39, If[Binomial[c46-40,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-40, If[Binomial[c46-41,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-41, If[Binomial[c46-42,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-42, If[Binomial[c46-43,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-43, If[Binomial[c46-44,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-44, If[Binomial[c46-45,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-45, If[Binomial[c46-46,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-46, If[Binomial[c46-47,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-47, If[Binomial[c46-48,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-48, If[Binomial[c46-49,4]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5],c46-49, 3]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c48=If[Binomial[c47-1,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-1, If[Binomial[c47-2,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-2, If[Binomial[c47-3,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-3, If[Binomial[c47-4,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-4, If[Binomial[c47-5,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-5, If[Binomial[c47-6,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-6, If[Binomial[c47-7,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-7, If[Binomial[c47-8,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-8, If[Binomial[c47-9,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-9, If[Binomial[c47-10,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-10, If[Binomial[c47-11,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-11, If[Binomial[c47-12,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-12, If[Binomial[c47-13,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-13, If[Binomial[c47-14,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-14, If[Binomial[c47-15,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-15, If[Binomial[c47-16,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-16, If[Binomial[c47-17,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-17, If[Binomial[c47-18,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-18, If[Binomial[c47-19,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-19, If[Binomial[c47-20,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-20, If[Binomial[c47-21,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-21, If[Binomial[c47-22,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-22, If[Binomial[c47-23,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-23, If[Binomial[c47-24,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-24, If[Binomial[c47-25,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-25, If[Binomial[c47-26,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-26, If[Binomial[c47-27,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-27, If[Binomial[c47-28,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-28, If[Binomial[c47-29,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-29, If[Binomial[c47-30,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-30, If[Binomial[c47-31,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-31, If[Binomial[c47-32,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-32, If[Binomial[c47-33,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-33, If[Binomial[c47-34,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-34, If[Binomial[c47-35,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-35, If[Binomial[c47-36,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-36, If[Binomial[c47-37,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-37, If[Binomial[c47-38,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-38, If[Binomial[c47-39,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-39, If[Binomial[c47-40,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-40, If[Binomial[c47-41,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-41, If[Binomial[c47-42,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-42, If[Binomial[c47-43,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-43, If[Binomial[c47-44,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-44, If[Binomial[c47-45,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-45, If[Binomial[c47-46,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-46, If[Binomial[c47-47,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-47, If[Binomial[c47-48,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-48, If[Binomial[c47-49,3]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4],c47-49, 2]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c49=If[Binomial[c48-1,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-1, If[Binomial[c48-2,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-2, If[Binomial[c48-3,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-3, If[Binomial[c48-4,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-4, If[Binomial[c48-5,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-5, If[Binomial[c48-6,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-6, If[Binomial[c48-7,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-7, If[Binomial[c48-8,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-8, If[Binomial[c48-9,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-9, If[Binomial[c48-10,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-10, If[Binomial[c48-11,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-11, If[Binomial[c48-12,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-12, If[Binomial[c48-13,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-13, If[Binomial[c48-14,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-14, If[Binomial[c48-15,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-15, If[Binomial[c48-16,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-16, If[Binomial[c48-17,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-17, If[Binomial[c48-18,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-18, If[Binomial[c48-19,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-19, If[Binomial[c48-20,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-20, If[Binomial[c48-21,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-21, If[Binomial[c48-22,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-22, If[Binomial[c48-23,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-23, If[Binomial[c48-24,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-24, If[Binomial[c48-25,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-25, If[Binomial[c48-26,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-26, If[Binomial[c48-27,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-27, If[Binomial[c48-28,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-28, If[Binomial[c48-29,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-29, If[Binomial[c48-30,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-30, If[Binomial[c48-31,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-31, If[Binomial[c48-32,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-32, If[Binomial[c48-33,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-33, If[Binomial[c48-34,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-34, If[Binomial[c48-35,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-35, If[Binomial[c48-36,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-36, If[Binomial[c48-37,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-37, If[Binomial[c48-38,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-38, If[Binomial[c48-39,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-39, If[Binomial[c48-40,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-40, If[Binomial[c48-41,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-41, If[Binomial[c48-42,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-42, If[Binomial[c48-43,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-43, If[Binomial[c48-44,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-44, If[Binomial[c48-45,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-45, If[Binomial[c48-46,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-46, If[Binomial[c48-47,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-47, If[Binomial[c48-48,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-48, If[Binomial[c48-49,2]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3],c48-49, 1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; c50=If[Binomial[c49-1,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-1, If[Binomial[c49-2,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-2, If[Binomial[c49-3,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-3, If[Binomial[c49-4,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-4, If[Binomial[c49-5,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-5, If[Binomial[c49-6,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-6, If[Binomial[c49-7,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-7, If[Binomial[c49-8,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-8, If[Binomial[c49-9,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-9, If[Binomial[c49-10,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-10, If[Binomial[c49-11,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-11, If[Binomial[c49-12,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-12, If[Binomial[c49-13,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-13, If[Binomial[c49-14,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-14, If[Binomial[c49-15,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-15, If[Binomial[c49-16,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-16, If[Binomial[c49-17,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-17, If[Binomial[c49-18,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-18, If[Binomial[c49-19,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-19, If[Binomial[c49-20,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-20, If[Binomial[c49-21,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-21, If[Binomial[c49-22,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-22, If[Binomial[c49-23,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-23, If[Binomial[c49-24,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-24, If[Binomial[c49-25,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-25, If[Binomial[c49-26,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-26, If[Binomial[c49-27,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-27, If[Binomial[c49-28,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-28, If[Binomial[c49-29,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-29, If[Binomial[c49-30,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-30, If[Binomial[c49-31,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-31, If[Binomial[c49-32,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-32, If[Binomial[c49-33,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-33, If[Binomial[c49-34,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-34, If[Binomial[c49-35,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-35, If[Binomial[c49-36,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-36, If[Binomial[c49-37,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-37, If[Binomial[c49-38,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-38, If[Binomial[c49-39,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-39, If[Binomial[c49-40,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-40, If[Binomial[c49-41,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-41, If[Binomial[c49-42,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-42, If[Binomial[c49-43,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-43, If[Binomial[c49-44,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-44, If[Binomial[c49-45,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-45, If[Binomial[c49-46,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-46, If[Binomial[c49-47,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-47, If[Binomial[c49-48,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-48, If[Binomial[c49-49,1]<csn-Binomial[c1,50]-Binomial[c2,49]-Binomial[c3,48]-Binomial[c4,47]-Binomial[c5,46]-Binomial[c6,45]-Binomial[c7,44]-Binomial[c8,43]-Binomial[c9,42]-Binomial[c10,41]-Binomial[c11,40]-Binomial[c12,39]-Binomial[c13,38]-Binomial[c14,37]-Binomial[c15,36]-Binomial[c16,35]-Binomial[c17,34]-Binomial[c18,33]-Binomial[c19,32]-Binomial[c20,31]-Binomial[c21,30]-Binomial[c22,29]-Binomial[c23,28]-Binomial[c24,27]-Binomial[c25,26]-Binomial[c26,25]-Binomial[c27,24]-Binomial[c28,23]-Binomial[c29,22]-Binomial[c30,21]-Binomial[c31,20]-Binomial[c32,19]-Binomial[c33,18]-Binomial[c34,17]-Binomial[c35,16]-Binomial[c36,15]-Binomial[c37,14]-Binomial[c38,13]-Binomial[c39,12]-Binomial[c40,11]-Binomial[c41,10]-Binomial[c42,9]-Binomial[c43,8]-Binomial[c44,7]-Binomial[c45,6]-Binomial[c46,5]-Binomial[c47,4]-Binomial[c48,3]-Binomial[c49,2],c49-49, 0]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]; res={n-c1,n-c2,n-c3,n-c4,n-c5,n-c6,n-c7,n-c8,n-c9,n-c10,n-c11,n-c12,n-c13,n-c14,n-c15,n-c16,n-c17,n-c18,n-c19,n-c20,n-c21,n-c22,n-c23,n-c24,n-c25,n-c26,n-c27,n-c28,n-c29,n-c30,n-c31,n-c32,n-c33,n-c34,n-c35,n-c36,n-c37,n-c38,n-c39,n-c40,n-c41,n-c42,n-c43,n-c44,n-c45,n-c46,n-c47,n-c48,n-c49,If[c50==0&&n==100,0,n-c50]}];res>>>"ProjetoLotomania.txt",{i,100,150,10}]]; Close[stmp]; {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,99} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,60} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,70} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,80} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,90} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,0} > > Respectfully, Paulo Henrique >