Re: Simplification of Hypergeometric Function
- To: mathgroup at smc.vnet.net
- Subject: [mg84638] Re: [mg84613] Simplification of Hypergeometric Function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 7 Jan 2008 07:28:49 -0500 (EST)
- Reply-to: hanlonr at cox.net
(LegendreP[n, m, 2, z] // FunctionExpand) /. m -> 0 Hypergeometric2F1[-n, n + 1, 1, (1 - z)/2] % == (LegendreP[n, m, 3, z] // FunctionExpand) /. m -> 0 True %% == LegendreP[n, z] // FullSimplify True repl = Hypergeometric2F1[-n_, n_ + 1, 1, z_] :> LegendreP[n, 1 - 2 z]; Hypergeometric2F1[-n, n + 1, 1, (1 - z)/2] /. repl LegendreP[n, z] Bob Hanlon ---- Fabian <NOSPAM_fahasch at yahoo.de> wrote: > How can one simplify > Hypergeometric2F1[-n, 1 + n, 1, (1- z)/2] > to the more elementary function LegendreP using Mathematica? > > Fabian >