Re: Filled Polar plots
- To: mathgroup at smc.vnet.net
- Subject: [mg85180] Re: Filled Polar plots
- From: Yaroslav Bulatov <yaroslavvb at gmail.com>
- Date: Thu, 31 Jan 2008 00:49:49 -0500 (EST)
- References: <fnpnrq$cpt$1@smc.vnet.net>
Thanks for the suggestions, all of them work, ParametricPlot also works if you use BoundaryStyle -> None, here's the summary (* Function to Plot *) f[x_] := (Cos[(3*x)/4]^18 + Sin[(3*x)/4]^18)^(-1/5); (* Two replacements *) PolarPlot[f[x], {x, -Pi, Pi}, PlotRange -> All, Axes -> None] /. {h_Hue, Line[pp_]} -> {{h, Polygon[pp]}, {Thick, Line[pp]}} (* One replacement+EdgeForm *) PolarPlot[f[x], {x, -Pi, Pi}, PlotRange -> All, Axes -> None, PlotStyle -> Directive[{Lighter[Green, .6], EdgeForm[Gray]}]] /. Line -> Polygon (* EdgeForm could be specified in the replacement rule *) PolarPlot[f[x], {x, -Pi, Pi}, PlotRange -> All, Axes -> None] /. Line[a_] -> {Yellow, EdgeForm[Thick], Polygon[a]} (* RegionPlot *) RegionPlot[f[ArcTan[x, y]] > Sqrt[x^2 + y^2], {x, -4, 4}, {y, -4, 4}] (* PolarPlot+ParametricPlot *) Show[ParametricPlot[ f[x] r {Cos[x], Sin[x]} // Evaluate, {r, 0, 1}, {x, -Pi, Pi}, Mesh -> None, PlotPoints -> {3, 50}, PlotStyle -> Green, BoundaryStyle -> None], PolarPlot[(formula @@ vals[[1]])[x], {x, -Pi, Pi}], Axes -> False]