several plots in manipulate
- To: mathgroup at smc.vnet.net
- Subject: [mg90754] several plots in manipulate
- From: "Cristina Ballantine" <cballant at holycross.edu>
- Date: Wed, 23 Jul 2008 05:56:46 -0400 (EDT)
Hi, I would like to manipulate a plot created from three different parametric plots. I display the plot with Show[plot1,plot2,plot3] (see code below). If I try this in Manipulate, the plots are displayed next to each other. I need them in a single plot. I cannot combine them in a single ParameterPlot because the options are different. Any help is very much appreciated. Cristina ---------------------------------------------------------------------------= -------------- In the plot r2=2/3. In Manipulate r2 should be between r1 and 1. r1 := 1/4 r2 := 2/3 u := Pi/3 plot1 := ParametricPlot[{{Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}}, {t, 10^(-10), 2*Pi - 10^(-10)}, {r, 0, r1^4*r2^4 - 10^(-6)}, PlotRange -> All, ColorFunction -> Function[{x, y, t, r}, Hue[.5, t, r]], PlotPoints -> 25, Mesh -> False] plot2 := ParametricPlot[{{Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}}, {t, 10^(-10), 2*Pi - 10^(-10)}, {r, r1^4*r2^4 - 10^(-6), r1^4*r2^4 + 10^(-2)}, PlotRange -> All, ColorFunction -> Function[{x, y, t, r}, Hue[1, t, r]], PlotPoints -> 45, Mesh -> False] plot3 := ParametricPlot[{{Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ 1*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[1*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[ I*Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[I*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-1)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-1)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) + Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}, {Re[(-I)* Exp[I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/4)], Im[(-I)*Exp[ I*u]*(((r1^4 + r2^4)*(1 - r*Exp[I*t]) - Sqrt[(r1^4 + r2^4)^2*(1 - r*Exp[I*t])^2 - 4*(1 - r1^4*r2^4 *r*Exp[I*t])*(r1^4*r2^4 - r*Exp[I*t])])/(2*(1 - r1^4*r2^4*r*Exp[I*t])))^(1/ 4)]}}, {t, 10^(-10), 2*Pi - 10^(-10)}, {r, r1^4*r2^4 + 10^(-2), 1}, PlotRange -> All, ColorFunction -> Function[{x, y, t, r}, Hue[.1, t, r]], PlotPoints -> 25, Mesh -> False]