Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- To: mathgroup at smc.vnet.net
- Subject: [mg90784] Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- From: "Kevin J. McCann" <Kevin.McCann at umbc.edu>
- Date: Thu, 24 Jul 2008 04:52:22 -0400 (EDT)
- Organization: University System of Maryland
- References: <g6710s$sb6$1@smc.vnet.net>
I actually get: 1/5 Sqrt[2+4 I] (-5 I EllipticE[-(3/5)-(4 I)/5]+(2+I) Sqrt[5] EllipticE[-(3/5)+(4 I)/5]-(12-4 I) EllipticK[-(3/5)-(4 I)/5]+(6-2 I) Sqrt[5] EllipticK[8/5-(4 I)/5]+4 I Sqrt[5] EllipticPi[1/5+(2 I)/5,-(3/5)+(4 I)/5]+(8+4 I) EllipticPi[1-2 I,-(3/5)-(4 I)/5]) which evaluates to your numerical answer below, Valeri Astanoff wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])]))//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > > V.Astanoff >