Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- To: mathgroup at smc.vnet.net
- Subject: [mg90798] Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- From: Grischika at mail.ru
- Date: Thu, 24 Jul 2008 04:55:03 -0400 (EDT)
- References: <g6710s$sb6$1@smc.vnet.net>
On 23 =C9=C0=CC, 13:26, Valeri Astanoff <astan... at gmail.com> wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= =9A(1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > =9A =9A =9A =9A 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > =9A =9A =9A =9A EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])])= )//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > V.Astanoff Hello. You can try to take indefinite integral: eq=Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], t] Here Mathematica gives you an answer: ((2/5 + (4*I)/5)*Cos[t/2]^4*((2 + I)*Sqrt[1 - 2*I]* EllipticE[I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]* Sec[t/2]^2*Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]* Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] - I*((6 - 2*I)*Sqrt[1 - 2*I]*EllipticF[ I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]*Sec[t/2]^2* Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] - 4*Sqrt[1 - 2*I]*EllipticPi[1/5 + (2*I)/5, I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]*Sec[t/2]^2* Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] + (2 + I)*(Tan[t/2] + 2*Tan[t/2]^3 + 5*Tan[t/2]^5))))/ Sqrt[5 - 4*Cos[t] + Cos[2*t]] Then find Limits: Limit[eq, t ->0] gives 0, Limit[eq, t -> Pi] gives (2/5 + I/5)*Sqrt[2/5 + (4*I)/5]* ((1 + 2*I)*Sqrt[5]*EllipticE[-3/5 - (4*I)/5] - 5*EllipticE[-3/5 + (4*I)/5] + (4 - 4*I)*Sqrt[5]* EllipticK[-3/5 - (4*I)/5] - (10 - 10*I)*EllipticK[8/5 - (4*I)/5] - (4 + 8*I)*EllipticPi[1/5 + (2*I)/5, -3/5 + (4*I)/5] - 4*Sqrt[5]*EllipticPi[1 - 2*I, -3/5 - (4*I)/5]) so, the result is N@% -6.72287972344033 - 9.947771772989*^-15*I The problem only with the sign of result.