Re: Re: Mathematica 6 obtains imaginary eigenvalues for a Hermitian
- To: mathgroup at smc.vnet.net
- Subject: [mg86142] Re: [mg86115] Re: Mathematica 6 obtains imaginary eigenvalues for a Hermitian
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Mon, 3 Mar 2008 04:40:54 -0500 (EST)
- References: <fqb9ai$na0$1@smc.vnet.net> <200803021856.NAA19943@smc.vnet.net>
Eigenvalues or characteristic values of a are defined (or rather, can be defined) as the roots of the characteristic polynomial - and it does not matter is the matrix is invertible or not. Indeed, for a nilpotent matrix, such as M = {{-1, I}, {I, 1}} we have In[39]:= Eigenvalues[M] Out[39]= {0, 0} and In[40]:= CharacteristicPolynomial[M, x] Out[40]= x^2 Moreover, the problem has nothing to do with numerical precision because in this case the exact eigenvalues do not satisfy the characteristic polynomial and in fact are the exact roots of a different polynomial of the same degree (as shown in my first post in this thread). Very weird. Andrzej Kozlowski On 2 Mar 2008, at 19:56, David Reiss wrote: > Note that your matrix is not invertible (its determinant is zero). So > this is the source of your problem... > > Hope that this helps... > > -David > A WorkLife FrameWork > E x t e n d i n g MATHEMATICA's Reach... > http://scientificarts.com/worklife/ > > > > > On Mar 1, 4:57=A0am, Sebastian Meznaric <mezna... at gmail.com> wrote: >> I have a 14x14 Hermitian matrix, posted at the bottom of this >> message. >> The eigenvalues that Mathematica obtains using the >> N[Eigenvalues[matrix]] include non-real numbers: >> {-9.41358 + 0.88758 \[ImaginaryI], -9.41358 - >> =A0 0.88758 \[ImaginaryI], -7.37965 + 2.32729 \[ImaginaryI], >> -7.37965 - >> =A0 2.32729 \[ImaginaryI], -4.46655 + 2.59738 \[ImaginaryI], >> -4.46655 - >> =A0 2.59738 \[ImaginaryI], 4.36971, 3.21081, -2.32456 + >> =A0 2.10914 \[ImaginaryI], -2.32456 - 2.10914 \[ImaginaryI], >> =A02.04366+ 0.552265 \[ImaginaryI], >> =A02.04366- 0.552265 \[ImaginaryI], -0.249588 + >> =A0 1.29034 \[ImaginaryI], -0.249588 - 1.29034 \[ImaginaryI]}. >> However, if you do Eigenvalues[N[matrix]] it obtains different >> results >> {-9.09122, -7.41855, -7.41855, -7.2915, 4.33734, -4., -4., 3.2915, \ >> -3.24612, -2.38787, -2.38787, 1.80642, 1.80642, 0}. >> >> These results agree with Solve[CharacteristicPolynomial[matrix,x],x]. >> Therefore I assume that the latter are correct. Has anyone seen this? >> I am using 6.0.0. >> >> Here is the matrix: >> {{-6, 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0}, {0, -6, >> =A0 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, 0}, {-Sqrt[3], 0, >> -4, >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), 2 Sqrt[2/3], 0, 0, Sqrt[3], >> 0, >> =A0 0, 0, 0, 0, 0}, {0, -Sqrt[3], >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -4/3, -(2 Sqrt[2])/3, 0, 0, >> 0, >> =A0 Sqrt[3], 0, 0, 0, 0, 0}, {0, 0, 2 Sqrt[2/3], -(2 Sqrt[2])/3, >> 7/3, 0, >> =A0 =A00, 0, 0, Sqrt[3], 0, 0, 0, 0}, {Sqrt[3], 0, 0, 0, 0, -4, 0, >> =A0 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, 0, 2 Sqrt[2/3], 0, 0, 0}, {0, >> =A0 Sqrt[3], 0, 0, 0, 0, -4, 0, 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, 0, >> =A0 2 Sqrt[2/3], 0, 0}, {0, 0, Sqrt[3], 0, 0, >> =A0 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, -14/3, >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), 2 Sqrt[2/3], (2 Sqrt[2])/3, >> 0, >> =A0 0, 0}, {0, 0, 0, Sqrt[3], 0, 0, 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -2, -(2 Sqrt[2])/3, 0, ( >> =A0 2 Sqrt[2])/3, 0, 0}, {0, 0, 0, 0, Sqrt[3], 0, 0, >> =A0 2 Sqrt[2/3], -(2 Sqrt[2])/3, -7/3, 0, 0, >> =A0 2 (1/(3 Sqrt[2]) + (2 Sqrt[2])/3), Sqrt[10/3]}, {0, 0, 0, 0, 0, >> =A0 2 Sqrt[2/3], 0, (2 Sqrt[2])/3, 0, 0, -16/3, >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), 2 Sqrt[2/3], 0}, {0, 0, 0, >> 0, 0, >> =A0 =A00, 2 Sqrt[2/3], 0, (2 Sqrt[2])/3, 0, >> =A0 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -8/3, -(2 Sqrt[2])/3, 0}, >> {0, 0, >> =A0 =A00, 0, 0, 0, 0, 0, 0, 2 (1/(3 Sqrt[2]) + (2 Sqrt[2])/3), >> =A0 2 Sqrt[2/3], -(2 Sqrt[2])/3, 1/2, >> =A0 2 (-Sqrt[5/3]/16 - Sqrt[15]/16)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, >> Sqrt[ >> =A0 10/3], 0, 0, 2 (-Sqrt[5/3]/16 - Sqrt[15]/16), 7/2}} > >
- References:
- Re: Mathematica 6 obtains imaginary eigenvalues for a Hermitian
- From: David Reiss <dbreiss@gmail.com>
- Re: Mathematica 6 obtains imaginary eigenvalues for a Hermitian