Re: Integrate problem

*To*: mathgroup at smc.vnet.net*Subject*: [mg86204] Re: [mg86185] Integrate problem*From*: Bob Hanlon <hanlonr at cox.net>*Date*: Thu, 6 Mar 2008 02:56:03 -0500 (EST)*Reply-to*: hanlonr at cox.net

Look at the TraditionalForm and you will see that HypergeometricPFQ[{}, {b1, b2}, z] is 0F2[{}, {b1, b2}, z], i.e., there are no numerator parameters in the series expansion SeriesCoefficient[HypergeometricPFQ[{}, {b1, b2}, z], {z, 0, n}] == 1/(Pochhammer[b1, n]*Pochhammer[b2, n]*n!) // FullSimplify True Bob Hanlon ---- Michael Weyrauch <michael.weyrauch at gmx.de> wrote: > Hello, > > evaluating the integral > > Integrate[Sin[1/x]*(Exp[(-a)*x^2]/x), {x, 0, Infinity}, Assumptions -> a > 0] > > in Mathematica 6.0.1 produces > (1/2)*Pi*HypergeometricPFQ[{}, {1/2, 1}, a/4] - > Sqrt[a]*Sqrt[Pi]*HypergeometricPFQ[{}, {3/2, 3/2}, a/4] > > What is the meaning of the empty list in the first parameter of HypergeometricPFQ? > > Thanks for answers, > > Michael Weyrauch > >