Re: Bug in Interpolation for multi-d data?
- To: mathgroup at smc.vnet.net
- Subject: [mg86228] Re: Bug in Interpolation for multi-d data?
- From: Andrew Moylan <andrew.j.moylan at gmail.com>
- Date: Thu, 6 Mar 2008 03:00:36 -0500 (EST)
- References: <fq8r74$jf4$1@smc.vnet.net>
Previously: http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/c29e5cb747116d8/f9148f9d474c4f3d On Feb 29, 10:44 pm, oshaughn <oshau... at northwestern.edu> wrote: > Hello, > > Interpolation on multi-d data gives different answers depending on the > order in which the elements are *ordered* in the list. As far as I > can tell, this is not documented. > The sorted element order seems to produce the right results. > > Example 1: > dat = Flatten[ > Table[{{x, y}, Sin[x] Sin[2 y]}, {x, -3, 3, 0.1}, {y, -3, 3, 0.1}], > 1]; > dat[[{1, 2, 3}]] > intp = Interpolation[dat]; > ListPlot3D[Flatten /@ dat] > Plot3D[intp[x, y], {x, -3, 3}, {y, -3, 3}] > > Example 2: > dat = Flatten[ > Table[{{x, y}, Sin[x] Sin[2 y]}, {y, -3, 3, 0.1}, {x, -3, 3, 0.1}], > 1]; > dat[[{1, 2, 3}]] > intp = Interpolation[dat]; > ListPlot3D[Flatten /@ dat] > Plot3D[intp[x, y], {x, -3, 3}, {y, -3, 3}] > > Example 3: > dat = Flatten[ > Table[{{x, y}, Sin[x] Sin[2 y]}, {y, -3, 3, 0.1}, {x, -3, 3, 0.1}], > 1]//Sort; > dat[[{1, 2, 3}]] > intp = Interpolation[dat]; > ListPlot3D[Flatten /@ dat] > Plot3D[intp[x, y], {x, -3, 3}, {y, -3, 3}] > > Am I missing something obvious in the documentation?