Re: Another Mathematica 6 bug?
- To: mathgroup at smc.vnet.net
- Subject: [mg86305] Re: [mg86284] Another Mathematica 6 bug?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 8 Mar 2008 05:39:56 -0500 (EST)
- Reply-to: hanlonr at cox.net
They appear to be equivalent for Re[n-X] > -1/4 sol = FullSimplify[ Integrate[p*p^X*(1 - p)^(n - X)*p^(X - 1/2)*(1 - p)^(n - X - 1/2), {p, 0, 1}, GenerateConditions -> False]] (1/2)*Pi*(4*X + 1)* Hypergeometric2F1[-2*n, 2*X + 3/2, 2, 1]*Sec[2*Pi*X] See http://functions.wolfram.com/07.23.03.0002.01 For the stated condition sol2 = FullSimplify[ sol /. Hypergeometric2F1[a_, b_, c_, 1] -> Gamma[c] Gamma[c - a - b]/(Gamma[c - a] Gamma[c - b])] -((Pi*Gamma[2*n - 2*X + 1/2]* Sec[2*Pi*X])/(Gamma[2*n + 2]* Gamma[-2*X - 1/2])) Which is equivalent to the result that you were expecting sol2 == Gamma[1/2 + 2*n - 2*X]*Gamma[3/2 + 2*X]/Gamma[2 + 2*n] // FullSimplify True Bob Hanlon ---- Francogrex <franco at grex.org> wrote: > This integration below: > FullSimplify[Integrate[p*p^X*(1 - p)^(n - X)*p^(X - 1/2)* > (1 - p)^(n - X - 1/2), {p, 0, 1}, GenerateConditions -> False]] > > Should give: > (Gamma[1/2 + 2*n - 2*X]*Gamma[3/2 + 2*X])/Gamma[2 + 2*n] > > Instead in mathematica 6, it's giving: > (1/2)*Pi*(4*X + 1)*Hypergeometric2F1[-2*n, 2*X + 3/2, 2, > 1]*Sec[2*Pi*X] > > Something wrong? >