Re: Determinant and Characteristic Polynomial not working properly
- To: mathgroup at smc.vnet.net
- Subject: [mg86399] Re: [mg86343] Determinant and Characteristic Polynomial not working properly
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Mon, 10 Mar 2008 02:05:19 -0500 (EST)
- References: <200803091000.FAA12297@smc.vnet.net>
On 9 Mar 2008, at 11:00, Sebastian Meznaric wrote: > Recently I reported a problem with the symbolic evaluation of > eigenvalues of a Hermitian matrix. This time I also have a Hermitian > matrix, for which Eigenvalues works as expected but the > CharacteristicPolynomial and Det do not give the right results. Here > goes > > The matrix is > > mat = {{-1, 0, 1/Sqrt[3], 0, 0, 2 Sqrt[2/3], 0, 0, 0, 0, 0, 0, 0, > 0}, {0, -1, 0, 1/Sqrt[3], 0, 0, 2 Sqrt[2/3], 0, 0, 0, 0, 0, 0, > 0}, {1/Sqrt[3], 0, -5/3, 4/Sqrt[3], 2 Sqrt[2/3], (2 Sqrt[2])/3, 0, > 0, 0, 0, 0, 0, 0, 0}, {0, 1/Sqrt[3], 4/Sqrt[3], 1, -(2 Sqrt[2])/3, > 0, (2 Sqrt[2])/3, 0, 0, 0, 0, 0, 0, 0}, {0, 0, > 2 Sqrt[2/3], -(2 Sqrt[2])/3, 2/3, 0, 0, (5 Sqrt[2])/3, Sqrt[10/3], > 0, 0, 0, 0, 0}, {2 Sqrt[2/3], 0, (2 Sqrt[2])/3, 0, 0, -41/6, 4/Sqrt[ > 3], 2 Sqrt[2/3], 0, Sqrt[15]/2, 0, 0, 0, 0}, {0, 2 Sqrt[2/3], 0, ( > 2 Sqrt[2])/3, 0, 4/Sqrt[3], -25/6, -(2 Sqrt[2])/3, 0, 0, Sqrt[15]/2, > 0, 0, 0}, {0, 0, 0, 0, (5 Sqrt[2])/3, > 2 Sqrt[2/3], -(2 Sqrt[2])/3, -1, -Sqrt[5/3]/2, 0, 0, Sqrt[15]/2, 0, > 0}, {0, 0, 0, 0, Sqrt[10/3], 0, 0, -Sqrt[5/3]/2, 2, 0, 0, 0, Sqrt[ > 15]/2, 0}, {0, 0, 0, 0, 0, Sqrt[15]/2, 0, 0, 0, -5/2, 4/Sqrt[3], > 2 Sqrt[2/3], 0, 0}, {0, 0, 0, 0, 0, 0, Sqrt[15]/2, 0, 0, 4/Sqrt[3], > 1/6, -(2 Sqrt[2])/3, 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[15]/2, 0, > 2 Sqrt[2/3], -(2 Sqrt[2])/3, -2/3, Sqrt[3/5]/2, 3 Sqrt[2/5]}, {0, 0, > 0, 0, 0, 0, 0, 0, Sqrt[15]/2, 0, 0, Sqrt[3/5]/2, 9/5, (3 Sqrt[6])/ > 5}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 Sqrt[2/5], (3 Sqrt[6])/5, 6/ > 5}} > > It is Hermitian so there should be no imaginary eigenvalues. Now > Factor[CharacteristicPolynomial[ham52, x]] > > 1/69984000(-3439853567779 - 24078974976000 x - 56470929408000 x^2 - > 39558316032000 x^3 + 27303837696000 x^4 + 35330162688000 x^5 - > 5536014336000 x^6 - 8814624768000 x^7 + 425502720000 x^8 + > 954021888000 x^9 + 10077696000 x^10 - 47029248000 x^11 - > 2519424000 x^12 + 839808000 x^13 + 69984000 x^14) > > Now we do > N[Solve[CharacteristicPolynomial[ham52, x] == 0, x]] > (note we are doing Solve first and then N) and we get > {{x -> -9.81623}, {x -> -4.34022}, {x -> -2.72532}, {x -> -0.62248}, \ > {x -> -0.365633}, {x -> 2.}, {x -> 2.96246}, {x -> > 4.90719}, {x -> -4.34015 - > 0.0000367756 \[ImaginaryI]}, {x -> -4.34015 + > 0.0000367756 \[ImaginaryI]}, {x -> -0.622083 - > 0.000229308 \[ImaginaryI]}, {x -> -0.622083 + > 0.000229308 \[ImaginaryI]}, {x -> > 2.96235- 0.0000632158 \[ImaginaryI]}, {x -> > 2.96235+ 0.0000632158 \[ImaginaryI]}} > > N[Eigenvalues[mat]] > > {-9.81623, 4.90719, -4.34017, -4.34017, -4.34017, 2.96239, 2.96239, \ > 2.96239, -2.72532, 2., -0.622216, -0.622216, -0.622216, -0.365633} > > and Eigenvalues[N[mat]] > {-9.81623, 4.90719, -4.34017, -4.34017, -4.34017, 2.96239, 2.96239, \ > 2.96239, -2.72532, 2., -0.622216, -0.622216, -0.622216, -0.365633} > Yes, indeed, there must be a bug in in the way Det of symbolic matrices is comuted. One can get the correct charctristic polynomial by using significance arithmetic: f = Factor[Rationalize[CharacteristicPolynomial[N[mat, 10], x], 0]] (x - 2)*(x^3 + 2*x^2 - 12*x - 8)^3*(x^4 + 8*x^3 - 32*x^2 - 144*x - 48) x /. NSolve[f == 0, x] {-9.81623254755391, -4.340172973252067, -4.340172973252067, -4.340172973252067, -2.725323288781692, -0.6222156349319639, -0.6222156349319639, -0.6222156349319639, -0.3656331685835141, 2., 2.9623886081840314, 2.9623886081840314, 2.9623886081840314, 4.907189004919114} Also, as you correclty note, Det gives the wrong answer: Det[mat] -(332576637342150268561733/188956800) One way to get the right answer is to use the LUDecomposition: {lu, p, c} = LUDecomposition[mat]; u = lu SparseArray[{i_, j_} /; j >= i -> 1, Dimensions[mat]]; Det[u] -49152 which agrees with FullSimplify[Times @@ Eigenvalues[mat]] -49152 Andrzej Kozlowski
- References:
- Determinant and Characteristic Polynomial not working properly
- From: Sebastian Meznaric <meznaric@gmail.com>
- Determinant and Characteristic Polynomial not working properly