FullSimplify interpretation
- To: mathgroup at smc.vnet.net
- Subject: [mg86467] FullSimplify interpretation
- From: Brian Beckage <Brian.Beckage at uvm.edu>
- Date: Wed, 12 Mar 2008 00:10:55 -0500 (EST)
Hi all, Can anyone provide some guidance on how to interpret the result of FullSimplify[ ] given in the Cell Expression copied below? I'm specifically wondering how to interpret the conditional nature of the result. Thanks for your help! Best wishes, Brian Cell[CellGroupData[{Cell[BoxData[ RowBox[{" ", RowBox[{"d1EIGwP", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"d1EIG", "[", RowBox[{"[", "3", "]"}], "]"}], "/.", "parmListND1"}], ",", RowBox[{ RowBox[{"c", ">", "0"}], " ", "&&", RowBox[{"c", "\[Element]", "Reals"}], "&&", RowBox[{ SubscriptBox["M", "g"], ">", "0"}], " ", "&&", RowBox[{ SubscriptBox["M", "g"], "\[Element]", "Reals"}], "&&", RowBox[{ SubscriptBox["r", "g"], ">", "0"}], "&&", RowBox[{ SubscriptBox["r", "g"], "\[Element]", "Reals"}], "&&", RowBox[{ SubscriptBox["M", "p"], ">", "0"}], "&&", RowBox[{ SubscriptBox["M", "p"], "\[Element]", "Reals"}], "&&", RowBox[{ SubscriptBox["r", "p"], ">", "0"}], "&&", RowBox[{ SubscriptBox["r", "p"], "\[Element]", "Reals"}]}]}], "]"}], " "}]}]], "Input", CellChangeTimes->{{3.413589871370825*^9, 3.413589953706039*^9}, 3.413589997339566*^9, {3.4135900344682426`*^9, 3.413590190426937*^9}, {3.414235731209591*^9, 3.414235759758086*^9}, {3.414236913610442*^9, 3.4142369526933117`*^9}, {3.4142398465364103`*^9, 3.4142398469656754`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Piecewise]", GridBox[{ { RowBox[{"-", "1"}], RowBox[{ RowBox[{ RowBox[{"c", " ", SubscriptBox["M", "g"], " ", RowBox[{"(", RowBox[{ SubscriptBox["r", "g"], "+", SubscriptBox["r", "p"]}], ")"}]}], "+", RowBox[{ SubscriptBox["r", "g"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", SubscriptBox["M", "p"]}], "+", SubscriptBox["r", "g"], "+", SubscriptBox["r", "p"]}], ")"}]}]}], "\[GreaterEqual]", "0"}]}, { RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", SubscriptBox["M", "p"]}], RowBox[{ RowBox[{"c", " ", SubscriptBox["M", "g"]}], "+", SubscriptBox["r", "g"]}]]}], "+", FractionBox[ SubscriptBox["r", "p"], SubscriptBox["r", "g"]]}], TagBox["True", "PiecewiseDefault", AutoDelete->False, DeletionWarning->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}]}], ",", RowBox[{"\[Piecewise]", GridBox[{ { RowBox[{"-", "1"}], RowBox[{ RowBox[{ RowBox[{"c", " ", SubscriptBox["M", "g"], " ", RowBox[{"(", RowBox[{ SubscriptBox["r", "g"], "+", SubscriptBox["r", "p"]}], ")"}]}], "+", RowBox[{ SubscriptBox["r", "g"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", SubscriptBox["M", "p"]}], "+", SubscriptBox["r", "g"], "+", SubscriptBox["r", "p"]}], ")"}]}]}], "<", "0"}]}, { RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", SubscriptBox["M", "p"]}], RowBox[{ RowBox[{"c", " ", SubscriptBox["M", "g"]}], "+", SubscriptBox["r", "g"]}]]}], "+", FractionBox[ SubscriptBox["r", "p"], SubscriptBox["r", "g"]]}], TagBox["True", "PiecewiseDefault", AutoDelete->False, DeletionWarning->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}]}]}], "}"}]], "Output", CellChangeTimes->{3.414236972638122*^9, 3.414239858373014*^9}] }, Open ]]
- Follow-Ups:
- Re: FullSimplify interpretation
- From: "Matthias Bode" <lvsaba@hotmail.com>
- Re: FullSimplify interpretation