FullSimplify interpretation

• To: mathgroup at smc.vnet.net
• Subject: [mg86467] FullSimplify interpretation
• From: Brian Beckage <Brian.Beckage at uvm.edu>
• Date: Wed, 12 Mar 2008 00:10:55 -0500 (EST)

```Hi all,

Can anyone provide some guidance on how to interpret the result of
FullSimplify[ ] given in the Cell Expression copied below?  I'm
specifically wondering how to interpret the conditional nature of the
result.

Best wishes,
Brian

Cell[CellGroupData[{Cell[BoxData[
RowBox[{" ",
RowBox[{"d1EIGwP", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{
RowBox[{"d1EIG", "[",
RowBox[{"[", "3", "]"}], "]"}], "/.", "parmListND1"}], ",",
RowBox[{
RowBox[{"c", ">", "0"}], " ", "&&",
RowBox[{"c", "\[Element]", "Reals"}], "&&",
RowBox[{
SubscriptBox["M", "g"], ">", "0"}], " ", "&&",
RowBox[{
SubscriptBox["M", "g"], "\[Element]", "Reals"}], "&&",
RowBox[{
SubscriptBox["r", "g"], ">", "0"}], "&&",
RowBox[{
SubscriptBox["r", "g"], "\[Element]", "Reals"}], "&&",
RowBox[{
SubscriptBox["M", "p"], ">", "0"}], "&&",
RowBox[{
SubscriptBox["M", "p"], "\[Element]", "Reals"}], "&&",
RowBox[{
SubscriptBox["r", "p"], ">", "0"}], "&&",
RowBox[{
SubscriptBox["r", "p"], "\[Element]", "Reals"}]}]}], "]"}],
" "}]}]], "Input",
CellChangeTimes->{{3.413589871370825*^9, 3.413589953706039*^9},
3.413589997339566*^9, {3.4135900344682426`*^9,
3.413590190426937*^9}, {3.414235731209591*^9,
3.414235759758086*^9}, {3.414236913610442*^9,
3.4142369526933117`*^9}, {3.4142398465364103`*^9,
3.4142398469656754`*^9}}],

Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Piecewise]", GridBox[{
{
RowBox[{"-", "1"}],
RowBox[{
RowBox[{
RowBox[{"c", " ",
SubscriptBox["M", "g"], " ",
RowBox[{"(",
RowBox[{
SubscriptBox["r", "g"], "+",
SubscriptBox["r", "p"]}], ")"}]}], "+",
RowBox[{
SubscriptBox["r", "g"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "c"}], " ",
SubscriptBox["M", "p"]}], "+",
SubscriptBox["r", "g"], "+",
SubscriptBox["r", "p"]}], ")"}]}]}], "\[GreaterEqual]",
"0"}]},
{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
SubscriptBox["M", "p"]}],
RowBox[{
RowBox[{"c", " ",
SubscriptBox["M", "g"]}], "+",
SubscriptBox["r", "g"]}]]}], "+",
FractionBox[
SubscriptBox["r", "p"],
SubscriptBox["r", "g"]]}],
TagBox["True",
"PiecewiseDefault",
AutoDelete->False,
DeletionWarning->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {},
"Rows" -> {{1.}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
"Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}]}], ",",
RowBox[{"\[Piecewise]", GridBox[{
{
RowBox[{"-", "1"}],
RowBox[{
RowBox[{
RowBox[{"c", " ",
SubscriptBox["M", "g"], " ",
RowBox[{"(",
RowBox[{
SubscriptBox["r", "g"], "+",
SubscriptBox["r", "p"]}], ")"}]}], "+",
RowBox[{
SubscriptBox["r", "g"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "c"}], " ",
SubscriptBox["M", "p"]}], "+",
SubscriptBox["r", "g"], "+",
SubscriptBox["r", "p"]}], ")"}]}]}], "<", "0"}]},
{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
SubscriptBox["M", "p"]}],
RowBox[{
RowBox[{"c", " ",
SubscriptBox["M", "g"]}], "+",
SubscriptBox["r", "g"]}]]}], "+",
FractionBox[
SubscriptBox["r", "p"],
SubscriptBox["r", "g"]]}],
TagBox["True",
"PiecewiseDefault",
AutoDelete->False,
DeletionWarning->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {},
"Rows" -> {{1.}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {},
"Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}]}]}], "}"}]], "Output",
CellChangeTimes->{3.414236972638122*^9, 3.414239858373014*^9}]
}, Open  ]]

```

• Prev by Date: Complex NDSolve with Multifunctions
• Next by Date: V.6.0.2 gripes...
• Previous by thread: Complex NDSolve with Multifunctions
• Next by thread: Re: FullSimplify interpretation