Re: Integral wit Norm function
- To: mathgroup at smc.vnet.net
- Subject: [mg88293] Re: [mg88271] Integral wit Norm function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 1 May 2008 03:18:45 -0400 (EDT)
- Reply-to: hanlonr at cox.net
alfa[t_] := {t^2, 4 t, 8 t^3} normt[t_] = Simplify[Norm[alfa[t]], t > 0] t*Sqrt[64*t^4 + t^2 + 16] Clear[int]; int[a_] = FullSimplify[Integrate[normt[t], {t, 1, a}, Assumptions -> {a > 0}]] (1/8192)*(16*Sqrt[64*a^4 + a^2 + 16]*(128*a^2 + 1) + 4095*ArcSinh[(128*a^2 + 1)/ (3*Sqrt[455])] - (9/2)*(4128 + 455*Log[91/5])) Plot[int[a], {a, 0, 2}] Bob Hanlon ---- Miguel <misvrne at gmail.com> wrote: > How can I to calculate the integral of an expression which include > Norm function?. By example, > > Let the curve alfa[t_]:={t^2,4t, 8t^3}. Calculate > Integral[Norm[alfa[t]],{t,1,a}], where a is Real and >0. > > Thanks >