Re: orthonormal eigenvectors]
- To: mathgroup at smc.vnet.net
- Subject: [mg88469] Re: orthonormal eigenvectors]
- From: mante <claude.mante at univmed.fr>
- Date: Tue, 6 May 2008 06:39:15 -0400 (EDT)
First, since m is not hermitian, its eigenvectors are not necessarily orthogonal with each other. In[17]:= res = Eigenvectors[m] Out[17]= {{0, 0, 1}, {(-I)*Sqrt[2], 1, 0}, {I/Sqrt[2], 1, 0}} Relatively to the usual euclidean scalar product, we can see that these vectors are not orthogonal : In[55]:= Outer[Dot, res, res, 1] // N Out[55]= {{1., 0., 0.}, {0., -1., 2.}, {0., 2., 0.5}} but notice that Dot is not an hermitian form for *complex vector spaces*! One should use instead a scalar product like : Scal[u_List, v_List] := Dot[u, Conjugate[v]] // ComplexExpand then we have orthogonality : In[58]:= Outer[Scal, res, res, 1] // N Out[58]= {{1., 0., 0.}, {0., 3., 0.}, {0., 0., 1.5}} Hope this helps... Claude -- ********************************* Claude Manté UMR CNRS 6117 LMGEM http://www.com.univ-mrs.fr/LMGEM/ Centre d'Océanologie de Marseille Campus de Luminy, Case 901 13288 MARSEILLE Cedex 09 tel : (+33) 491 829 127 fax : (+33) 491 829 119 *********************************