Re: Problem: is not a list of numbers with dimensions
- To: mathgroup at smc.vnet.net
- Subject: [mg88492] Re: [mg88450] Problem: is not a list of numbers with dimensions
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 6 May 2008 06:44:25 -0400 (EDT)
- Reply-to: hanlonr at cox.net
In both cases, use Exp rather than exp A = 1*10^(-4); k = 2/3; g = 1.12*10^(-11); Attenuation = 0.23026*0.475*10^(-3); L = 7200; Leff = (1 - Exp[-Attenuation*L])/Attenuation; FindRoot[x - A*Exp[k*g*x*Leff - Attenuation*L], {x, 0}] {x->0.0000454986} Bob Hanlon ---- Fikri Serdar GOKHAN <fsgokhan at gmail.com> wrote: > When run the below code, > > > A=1*10^(-4); > > k=2/3; > > g=1.12*10^(-11); > > Attenuation= 0.23026*0.475*10^(-3); > > L=7200; > > Leff=(1-exp[-Attenuation*L])/Attenuation; > > > > FindRoot[x-A*exp[k*g*x*Leff-Attenuation*L],{x,0}] > > > > It executes the below solution, > > > > FindRoot::nlnum: The function value {0.-0.0001 exp[-0.787489+0. \ > > (1.+Times[<<2>>])]} is not a list of numbers with dimensions {1} at \ > > {x} = {0.}. > > > > I need your help about numerical and Alpha_numeric solution of this problem. > > > > > f(x)= x-A*exp[k*g*x*Leff-Attenuation*L > > > > Serdar > >