Re: Intersection of surfaces
- To: mathgroup at smc.vnet.net
- Subject: [mg88546] Re: Intersection of surfaces
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 8 May 2008 04:12:45 -0400 (EDT)
- Organization: Uni Leipzig
- References: <fvs2jg$en2$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, TUBE = {.6 Cos[V], 2 U + 3, .6 Sin[V] + 2}; tube = ParametricPlot3D[TUBE, {U, -1.2, .2}, {V, 0, 2 Pi}, PlotPoints -> {10, 25}]; BOWL = {p Cos[q], p^2/2, p Sin[q]}; bowl = ParametricPlot3D[BOWL, {p, 1, 2.75}, {q, 0, 2 Pi}, PlotPoints -> {20, 35}]; and eqn = Eliminate[{TUBE == {x, y, z} // Thread, BOWL == {x, y, z} // Thread} // Flatten, {p, q, U}]; and sol = Solve[eqn, {x, y, z}]; gives {{y -> 0.02 (100.+ 9. Cos[V]^2 + 60. Sin[V] + 9. Sin[V]^2), x -> 0.6 Cos[V], z -> 0.2 (10.+ 3. Sin[V])}} and ll = ParametricPlot3D[{x, y, z} /. sol[[1]], {V, 0, 2 Pi}]; Show[bowl, tube, ll /. l_Line :> {AbsoluteThickness[4], RGBColor[1, 0, 0], l}] show that the result is right. Regards Jens Narasimham wrote: > How to find the space curve formed by intersecting 3D patches in > simple cases like: > > TUBE = {.6 Cos[V], 2 U + 3, .6 Sin[V] + 2}; > tube = ParametricPlot3D[TUBE, {U, -1.2, .2}, {V, 0, 2 Pi}, PlotPoints - >> {10, 25}] > BOWL = {p Cos[q], p^2/2, p Sin[q]}; > bowl = ParametricPlot3D [ BOWL, {p, 1, 2.75}, {q, 0, 2 Pi}, PlotPoints > -> {20, 35}] > Show[bowl, tube] > > or in slightly more complicated surface cases like: > > terr = ParametricPlot3D[{Cos[u + 1] Cos[v + 2.1], 0.6 + u^2/3,Exp[-v/ > 4] }, {v, -3, 3}, {u, -3, 3}, PlotPoints -> {45, 30}] > Show[terr, tube] > > How to solve for x,y and z from {0.6 Cos[V] == p Cos[q], 3 + 2 U == > p^2/2, 2 + 0.6 Sin[V] == p Sin[q]} obtaining t as a function of (U,V,p > and q) so as to be able to Show with > > ParametricPlot3D[{x[t], y[t], z[t]},{t,tmin,tmax}]? > > Regards > Narasimham > >