       Applying the Integration Function to a List Of Regions

• To: mathgroup at smc.vnet.net
• Subject: [mg88739] Applying the Integration Function to a List Of Regions
• From: "John Snyder" <jsnyder at wi.rr.com>
• Date: Thu, 15 May 2008 06:51:58 -0400 (EDT)

```Assume that I have already determined a list of 4 dimensional regions as
follows:

regions={{{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx
x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2
a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx
x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,2
a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2
a}},{{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2
a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx
x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2
a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}}};

I want to integrate over each of these regions using an integrand of 1. I
want my output to be as follows:

{Integrate[1,{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx
x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2
a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx
x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,2
a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2
a}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2
a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx
x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx
x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx
x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}]}

How can I do that without having to set up each of the integrals manually?
I am looking for some way to do something like:

Integrate @@ regions

or

Integrate @@@ regions

But I can't figure out how to incorporate the 1 as the integrand when I try
to set this up automatically.

There must be a way?

Thanks,

John

```

• Prev by Date: Re: Expression manipulation
• Next by Date: Re: Expression manipulation
• Previous by thread: Re: cell convert to
• Next by thread: Re: Applying the Integration Function to a List Of Regions