Re: Applying the Integration Function to a List Of Regions

• To: mathgroup at smc.vnet.net
• Subject: [mg88797] Re: Applying the Integration Function to a List Of Regions
• From: Norbert Marxer <marxer at mec.li>
• Date: Fri, 16 May 2008 05:36:30 -0400 (EDT)
• References: <g0h4me\$lbl\$1@smc.vnet.net>

```On 15 Mai, 12:53, "John Snyder" <jsny... at wi.rr.com> wrote:
> Assume that I have already determined a list of 4 dimensional regions as
> follows:
>
> regions={{{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2
> a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx
> x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,2
> a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2
> a}},{{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2
> a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx
> x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2
> a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}}};
>
> I want to integrate over each of these regions using an integrand of 1. I
> want my output to be as follows:
>
> {Integrate[1,{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2
> a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx
> x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,2
> a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2
> a}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2
> a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx
> x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx
> x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx
> x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}]}
>
> How can I do that without having to set up each of the integrals manually?
> I am looking for some way to do something like:
>
> Integrate @@ regions
>
> or
>
> Integrate @@@ regions
>
> But I can't figure out how to incorporate the 1 as the integrand when I try
> to set this up automatically.
>
> There must be a way?
>
> Thanks,
>
> John

Hello

You could use Map

integrate[1, Sequence @@ #1] &  /@ regions

Note that I used "integrate" instead of "Integrate" to see that the
integration limits are set correctly.

To perform the calculation you have to use "Integrate" of course.

Best Regards
Norbert Marxer

```

• Prev by Date: Re: Applying the Integration Function to a List Of Regions
• Next by Date: Re: Traditional Ordering of Equations
• Previous by thread: Re: Applying the Integration Function to a List Of Regions
• Next by thread: Re: Applying the Integration Function to a List Of Regions