Re: Cannot NSolve a system of equations
- To: mathgroup at smc.vnet.net
- Subject: [mg88906] Re: Cannot NSolve a system of equations
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Wed, 21 May 2008 14:48:20 -0400 (EDT)
- References: <200805201052.GAA05057@smc.vnet.net>
murat.koyuncu at gmail.com wrote: > Dear all, > > I have the following system that I need to solve, but I cannot get a > sensible result. > > Unprotect[In,Out];Clear[In,Out];ClearAll["Global`*"]; > zet=0.083; > phi=0.75;eta=1.75;alpha=0.64;y1=0.235457064;y2=0.512465374;y3=0.781779009; > y4=1.109572176; y5=2.360726377;tau1=zet y1^phi;tau2=zet > y2^phi;tau3=zet y3^phi;tau4=zet y4^phi;tau5=zet y5^phi; > taubar=(tau1 y1+tau2 y2+tau3 y3+tau4 y4+tau5 y5)/ > 5;a1=(1+phi)tau1;a2=(1+phi)tau2;a3=(1+phi)tau3;a4=(1+phi)tau4;a5=(1+phi)tau5; > > eqns1={x1==(roverw(1-tau1)+((roverw+(1-x))y1-1)( (1-taubar+(1-abar)/ > eta)x+(taubar-tau1)roverw-(1-taubar)))/(roverw (1-tau1+(1-a1)/eta)- > ( (1-taubar+(1-abar)/eta)x+(taubar-tau1)roverw-(1-taubar))), > x2==(roverw(1-tau2)+((roverw+(1-x))y2-1)( (1-taubar+(1-abar)/eta)x+ > (taubar-tau2)roverw-(1-taubar)))/(roverw (1-tau2+(1-a2)/eta)-( (1- > taubar+(1-abar)/eta)x+(taubar-tau2)roverw-(1-taubar))), > x3==(roverw(1-tau3)+((roverw+(1-x))y3-1)( (1-taubar+(1-abar)/eta)x+ > (taubar-tau3)roverw-(1-taubar)))/(roverw (1-tau3+(1-a3)/eta)-( (1- > taubar+(1-abar)/eta)x+(taubar-tau3)roverw-(1-taubar))), > x4==(roverw(1-tau4)+((roverw+(1-x))y4-1)( (1-taubar+(1-abar)/eta)x+ > (taubar-tau4)roverw-(1-taubar)))/(roverw (1-tau4+(1-a4)/eta)-( (1- > taubar+(1-abar)/eta)x+(taubar-tau4)roverw-(1-taubar))), > x5==(roverw(1-tau5)+((roverw+(1-x))y5-1)( (1-taubar+(1-abar)/eta)x+ > (taubar-tau5)roverw-(1-taubar)))/(roverw (1-tau5+(1-a5)/eta)-( (1- > taubar+(1-abar)/eta)x+(taubar-tau5)roverw-(1-taubar))), > x==(x1+x2+x3+x4+x5)/5, abar == (a1 x1+a2 x2+a3 x3+a4 x4+a5 x5)/ > (5x),roverw==(1-x)(1-alpha)/alpha }; > > sol=NSolve[eqns1,{x, x1,x2,x3,x4,x5,abar, roverw}]; > > eqns1 /. sol > > Out[741]={{False, False, False, False, False, True, True, True}, > {False, False, > False, False, False, True, True, True}, {False, False, False, > False, False, True, False, True}, {False, False, True, False, False, > True, False, True}, {False, False, True, False, False, True, False, > True}, {False, False, True, True, False, True, True, False}} > > > What am I doing wrong? Is it just because the system is too > complicated? > > Any help would be truly appreciated. > Murat Quite possibly there are issues involving numeric stability and the presence of denominators. I was able to get a solution set, containg two solutions, by starting with exact input and then numericizing to high precision. zet = 83/1000; phi = 3/4; eta = 7/4; alpha = 16/25; {y1,y2,y3,y4,y5} = Rationalize[ {0.235457064,0.512465374,0.781779009,1.109572176,2.360726377}, 0]; With this I can do: In[34]:= Timing[sol = NSolve[N[eqns,500],vars];] Out[34]= {5., Null} In[36]:= eqns/.sol Out[36]= {{True, True, True, True, True, True, True, True}, {True, True, True, True, True, True, True, True}} Here are the solution values, at machine precision. In[39]:= InputForm[N[sol]] Out[39]//InputForm= {{x -> 0.6251836373550925, x1 -> 0.6454246796060954, x2 -> 0.6474758190687543, x3 -> 0.6445628507802813, x4 -> 0.6355486246954559, x5 -> 0.5529062126248758, abar -> 0.13411739130856176, roverw -> 0.21083420398776043}, {x -> 1., x1 -> 1., x2 -> 1., x3 -> 1., x4 -> 1., x5 -> 1., abar -> 0.13829898904658144, roverw -> 0.}} Daniel Lichtblau Wolfram Research
- References:
- Cannot NSolve a system of equations
- From: murat.koyuncu@gmail.com
- Cannot NSolve a system of equations