Re: Re: Cannot NSolve a system of equations
- To: mathgroup at smc.vnet.net
- Subject: [mg88984] Re: [mg88944] Re: Cannot NSolve a system of equations
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 23 May 2008 03:05:30 -0400 (EDT)
- Reply-to: hanlonr at cox.net
Note that Rationalize[0.74615385] 0.746154 As with your other numbers, use second parameter. phi = Rationalize[0.74615385, 0]; And when you defined zet using N[] you reverted back to machine precision. Instead use the second parameter to set extended precision. zet = N[5 taubar/Total[y^(1 + phi)], 50]; The precision used in NSolve need not be so large (try 100 vice 500). sol = NSolve[eqns1, vars, 100] Bob Hanlon ---- murat.koyuncu at gmail.com wrote: > I sincerely thank you all for your help. It cleared up a lot of things > for me. I had tried Rationalize but didn't know about precision > issues. > > Now I have a follow-up question. I still cannot trust my results 100% > because when I slightly change one of my parameters, solution set > changes drastically. My theory says that resulting variables should > between 0 and 1, so I am only interested in that range. And sometimes > I don't even get any such solutions. > > For example, here is my model (very much polished, thanks to your > suggestions): > > Unprotect[In, Out]; Clear[In, Out]; ClearAll["Global`*"]; > phi = Rationalize[0.74615385]; > eta = 7/4; > alpha = 16/25; > taubar = 13/100; > {y1, y2, y3, y4, y5} = > Rationalize[{0.235457064, 0.512465374, 0.781779009, 1.109572176, > 2.360726377}, 0]; > zet = N[5 taubar/(y1^(1 + phi) + y2^(1 + phi) + y3^(1 + phi) + y4^( > 1 + phi) + y5^(1 + phi))]; > tau1 = zet y1^phi; > tau2 = zet y2^phi; > tau3 = zet y3^phi; > tau4 = zet y4^phi; > tau5 = zet y5^phi; > a1 = (1 + phi) tau1; > a2 = (1 + phi) tau2; > a3 = (1 + phi) tau3; > a4 = (1 + phi) tau4; > a5 = (1 + phi) tau5; > eqns1 = {x1 == (roverw (1 - tau1) + ((roverw + (1 - x)) y1 - > 1) ((1 - taubar + (1 - abar)/eta) x + (taubar - tau1) > roverw - (1 - taubar)))/(roverw (1 - > tau1 + (1 - a1)/eta) - ((1 - taubar + (1 - abar)/eta) > x + (taubar - tau1) roverw - (1 - taubar))), > x2 == (roverw (1 - tau2) + ((roverw + (1 - x)) y2 - > 1) ((1 - taubar + (1 - abar)/eta) x + (taubar - tau2) > roverw - (1 - taubar)))/(roverw (1 - > tau2 + (1 - a2)/eta) - ((1 - taubar + (1 - abar)/eta) > x + (taubar - tau2) roverw - (1 - taubar))), > x3 == (roverw (1 - tau3) + ((roverw + (1 - x)) y3 - > 1) ((1 - taubar + (1 - abar)/eta) x + (taubar - tau3) > roverw - (1 - taubar)))/(roverw (1 - > tau3 + (1 - a3)/eta) - ((1 - taubar + (1 - abar)/eta) > x + (taubar - tau3) roverw - (1 - taubar))), > x4 == (roverw (1 - tau4) + ((roverw + (1 - x)) y4 - > 1) ((1 - taubar + (1 - abar)/eta) x + (taubar - tau4) > roverw - (1 - taubar)))/(roverw (1 - > tau4 + (1 - a4)/eta) - ((1 - taubar + (1 - abar)/eta) > x + (taubar - tau4) roverw - (1 - taubar))), > x5 == (roverw (1 - tau5) + ((roverw + (1 - x)) y5 - > 1) ((1 - taubar + (1 - abar)/eta) x + (taubar - tau5) > roverw - (1 - taubar)))/(roverw (1 - > tau5 + (1 - a5)/eta) - ((1 - taubar + (1 - abar)/eta) > x + (taubar - tau5) roverw - (1 - taubar))), > x == (x1 + x2 + x3 + x4 + x5)/5, > abar == (a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5)/(5 x), > roverw == (1 - x) (1 - alpha)/alpha}; > vars = {x, x1, x2, x3, x4, x5, abar, roverw}; > sol = NSolve[N[eqns1, 500], vars]; > InputForm[N[sol]] > > One of the solutions I get is between 0 and 1: > {x -> 0.5004885149810059, x1 -> 0.6893393376625371, > x2 -> 0.6337652704581314, x3 -> 0.5731109245369462, > x4 -> 0.4917632705087048, x5 -> 0.1144637717387098, > abar -> 0.1244737777525507, roverw -> 0.2809752103231842} > > So I am happy. But when I drop the last digit of the first parameter, > i.e. phi = Rationalize[0.7461538];, the new set of solutions do not > have any results compatible with my assumptions: > > {{x -> 0.2949617829869077, x1 -> -1.9491786143565832, x2 -> > 10.96762641745164, x3 -> 96.0369893781559, x4 -> -73.18097932930044, > x5 -> -30.399648937016046, abar -> -5.824073507107748, roverw -> > 0.39658399706986447}, > {x -> 2.0689803436369942, x1 -> -8.65276583855146, x2 -> > -18.39904428993495, x3 -> -33.55295774059405, x4 -> > -69.9736576669751, > x5 -> 140.92332725424055, abar -> 2.4458078645586667, roverw -> > -0.6013014432958093}, > {x -> 0.6213605439915423, x1 -> -12.823085779076337, x2 -> > 41.57610980587073, x3 -> -6.337885849417286, x4 -> > -8.665252197121296, > x5 -> -10.64308326029811, abar -> -0.7583206767716181, roverw -> > 0.21298469400475745}, > {x -> 0.6854511826071373 - 0.04362902433398709*I, x1 -> > 0.59964456896311 + 0.08549874839569205*I, > x2 -> 0.6411455792212575 + 0.04079939260558141*I, x3 -> > 0.6760747168284579 - 0.003707834204090894*I, > x4 -> 0.7125762414563436 - 0.05913956075670094*I, x5 -> > 0.7978148065665167 - 0.28159586771041706*I, > abar -> 0.17051392124951886 - 0.016129276403199968*I, roverw -> > 0.17693370978348527 + 0.024541326187867737*I}, > {x -> 0.6854511826071373 + 0.04362902433398709*I, x1 -> > 0.59964456896311 - 0.08549874839569205*I, > x2 -> 0.6411455792212575 - 0.04079939260558141*I, x3 -> > 0.6760747168284579 + 0.003707834204090894*I, > x4 -> 0.7125762414563436 + 0.05913956075670094*I, x5 -> > 0.7978148065665167 + 0.28159586771041706*I, > abar -> 0.17051392124951886 + 0.016129276403199968*I, roverw -> > 0.17693370978348527 - 0.024541326187867737*I}, > {x -> 0.9999999999989753, x1 -> 0.9999999999982316, x2 -> > 0.9999999999985612, x3 -> 0.999999999998809, x4 -> > 0.9999999999991211, > x5 -> 1.0000000000001525, abar -> 0.16068192162412143, roverw -> > 0.}} > > And this is just one of the instances that this happens. I solve the > same set of equations for many parameter sets. Sometimes I get a > solution in the [0,1] range, but it is so different than the previous > one, it doesn't make sense. Or sometimes, I have to tweak parameter > values (drop a digit here, add another one there) to get a meaningful > solution. I need a set of results over different parameter values that > I can compare and contrast, but it is hard to do that when my results > suddenly disappear or jump to an improbable value. > > Now I know that this is probably the most Mathematica can do for me, > but is there a way to make my system more "stable"? Maybe play with my > equations a little bit? Or put another way, what makes my system so > unstable? > > Again, any suggestions will be very much appreciated. Thanks! >