Re: ways to save the output from a notebook
- To: mathgroup at smc.vnet.net
- Subject: [mg93431] Re: [mg93408] ways to save the output from a notebook
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 7 Nov 2008 06:02:37 -0500 (EST)
- Reply-to: hanlonr at cox.net
Immediate evaluation: Clear[F]; F[x1_, x2_] = Module[{Yeni, Eski}, Yeni = x1^2; Eski = x2^3] x2^3 ?F Global`F F[x1_,x2_]=x2^3 Table[F[x1, x2], {x1, 3}, {x2, 3}]; ?F Global`F F[x1_,x2_]=x2^3 The definition of F has not been changed by use. Delayed evaluation : Clear[F]; F[x1_, x2_] := Module[{Yeni, Eski}, Yeni = x1^2; Eski = x2^3] ?F Global`F F[x1_,x2_]:=Module[{Yeni,Eski},Yeni=x1^2;Eski=x2^3] Table[F[x1, x2], {x1, 3}, {x2, 3}]; ?F Global`F F[x1_,x2_]:=Module[{Yeni,Eski},Yeni=x1^2;Eski=x2^3] Again, the definition of F has not been changed by use. Delayed evaluation with embedded immediate evaluation: Clear[F]; F[x1_, x2_] := F[x1, x2] = Module[{Yeni, Eski}, Yeni = x1^2; Eski = x2^3]; Note that the patterns only appear on the far LHS ?F Global`F F[x1_,x2_]:=F[x1,x2]=Module[{Yeni,Eski},Yeni=x1^2;Eski=x2^3] Table[F[x1, x2], {x1, 3}, {x2, 3}]; ?F Global`F F[1,1]=1 F[1,2]=8 F[1,3]=27 F[2,1]=1 F[2,2]=8 F[2,3]=27 F[3,1]=1 F[3,2]=8 F[3,3]=27 F[x1_,x2_]:=F[x1,x2]=Module[{Yeni,Eski},Yeni=x1^2;Eski=x2^3] The definition of F remembers the results of each call. This is particularly useful to speed up multiple calls to recursive defintions. See http://reference.wolfram.com/mathematica/tutorial/FunctionsThatRememberValuesTheyHaveFound.html Bob Hanlon ---- Tugrul Temel <temelt at xs4all.nl> wrote: ============= Dear All, Suppose that I have: F[x1_,x2_]:=F[x1_,x2_]= Module[ {Yeni, Eski}, Yeni=x1^2 ; Eski=x2^3 ] What role does F[x1_,x2_]:=F[x1_,x2_] have? What does it do? Regards, Tugrul