Re: Minimize
- To: mathgroup at smc.vnet.net
- Subject: [mg93570] Re: [mg93562] Minimize
- From: Carl Woll <carlw at wolfram.com>
- Date: Sat, 15 Nov 2008 06:02:46 -0500 (EST)
- References: <gfgqib$dm1$1@smc.vnet.net> <gfh3ca$g1d$1@smc.vnet.net> <200811140209.VAA16497@smc.vnet.net> <200811141136.GAA13071@smc.vnet.net>
Artur wrote: >Dear Mathematica Gurus, >What Mathematica procedure to use to minimize expotential finction e.g. >Minimize[Abs[3^d + 5^f - 2^7], {d, f}] >where we can push: d and f are both Integers > >NMinimize[Abs[3^d + 5^f - 2^7], {d, f}] >Mathematica answer is: >{2.66454*10^-14, {d -> 2.03248, f -> 2.96773}} > >good answer is: >{d,f}={1,3} > >Best wishes >Artur > > Add a constraint: In[43]:= NMinimize[{Abs[3^d + 5^f - 2^7], {d, f} \[Element] Integers}, {d, f}] Out[43]= {0.,{d->1,f->3}} Carl Woll Wolfram Research
- References:
- Re: Model the surface of an ellipsoid
- From: Mayneord <xrayspectrum@googlemail.com>
- Minimize
- From: Artur <grafix@csl.pl>
- Re: Model the surface of an ellipsoid