Re: Mathematica 7 is now available
- To: mathgroup at smc.vnet.net
- Subject: [mg93740] Re: Mathematica 7 is now available
- From: "Nasser Abbasi" <nma at 12000.org>
- Date: Mon, 24 Nov 2008 04:15:31 -0500 (EST)
- References: <gg0qf8$c6$1@smc.vnet.net> <gg3c6m$k2t$1@smc.vnet.net> <gg8pih$k4r$1@smc.vnet.net>
- Reply-to: "Nasser Abbasi" <nma at 12000.org>
"Szabolcs" <szhorvat at gmail.com> wrote in message news:gg8pih$k4r$1 at smc.vnet.net... > On Nov 21, 11:32 am, Michael Weyrauch <michael.weyra... at gmx.de> wrote: >> The Tally[] problem is solved. This I checked with a prerelease version >> of Mathematica 7 I got at this year's Mathematica users conference. >> > > What about the other bug (the eigenvalue problem), linked from the > same thread I mentioned? > > I copied the (wrong) results from Mathematica 6 here: > > > In[1]:= mat = {{-6, 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, 0, > 0}, {0, -6, 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, > 0}, {-Sqrt[3], 0, -4, 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), > 2 Sqrt[2/3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0}, {0, -Sqrt[3], > 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -4/3, -(2 Sqrt[2])/3, 0, 0, 0, > Sqrt[3], 0, 0, 0, 0, 0}, {0, 0, 2 Sqrt[2/3], -(2 Sqrt[2])/3, 7/3, > 0, 0, 0, 0, Sqrt[3], 0, 0, 0, 0}, {Sqrt[3], 0, 0, 0, 0, -4, 0, > 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, 0, 2 Sqrt[2/3], 0, 0, 0}, {0, > Sqrt[3], 0, 0, 0, 0, -4, 0, 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, 0, > 2 Sqrt[2/3], 0, 0}, {0, 0, Sqrt[3], 0, 0, > 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), 0, -14/3, > 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), 2 Sqrt[2/3], (2 Sqrt[2])/3, 0, > 0, 0}, {0, 0, 0, Sqrt[3], 0, 0, 2 (-1/(4 Sqrt[3]) + Sqrt[3]/4), > 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -2, -(2 Sqrt[2])/3, > 0, (2 Sqrt[2])/3, 0, 0}, {0, 0, 0, 0, Sqrt[3], 0, 0, > 2 Sqrt[2/3], -(2 Sqrt[2])/3, -7/3, 0, 0, > 2 (1/(3 Sqrt[2]) + (2 Sqrt[2])/3), Sqrt[10/3]}, {0, 0, 0, 0, 0, > 2 Sqrt[2/3], 0, (2 Sqrt[2])/3, 0, 0, -16/3, > 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), 2 Sqrt[2/3], 0}, {0, 0, 0, 0, > 0, 0, 2 Sqrt[2/3], 0, (2 Sqrt[2])/3, 0, > 2 (-1/(4 Sqrt[3]) + (3 Sqrt[3])/4), -8/3, -(2 Sqrt[2])/3, 0}, {0, > 0, 0, 0, 0, 0, 0, 0, 0, 2 (1/(3 Sqrt[2]) + (2 Sqrt[2])/3), > 2 Sqrt[2/3], -(2 Sqrt[2])/3, 1/2, > 2 (-Sqrt[5/3]/16 - Sqrt[15]/16)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, > Sqrt[10/3], 0, 0, 2 (-Sqrt[5/3]/16 - Sqrt[15]/16), 7/2}}; > > In[2]:= mat === Conjugate@Transpose[mat] > Out[2]= True > > (mat is Hermitian so we expect real eigenvalues.) > > In[3]:= N@Eigenvalues[mat] > > Out[3]= {-9.41358 + 0.88758 I, -9.41358 - 0.88758 I, -7.37965 + > 2.32729 I, -7.37965 - 2.32729 I, -4.46655 + 2.59738 I, -4.46655 - > 2.59738 I, 4.36971, 3.21081, -2.32456 + 2.10914 I, -2.32456 - > 2.10914 I, 2.04366+ 0.552265 I, > 2.04366- 0.552265 I, -0.249588 + 1.29034 I, -0.249588 - 1.29034 I} > > In[4]:= Eigenvalues[N[mat]] > > Out[4]= {-9.09122, -7.41855, -7.41855, -7.2915, 4.33734, -4., -4., \ > 3.2915, -3.24612, -2.38787, -2.38787, 1.80642, 1.80642, > 9.21707*10^-16} > It seems to be fixed in M7: In[36]:= $Version Out[36]= 7.0 for Microsoft Windows (32-bit) (November 10, 2008) In[32]:= mat = {{-6, 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0}, {0, -6, 0, -Sqrt[3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0, 0}, {-Sqrt[3], 0, -4, 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/ 4), 2*Sqrt[2/3], 0, 0, Sqrt[3], 0, 0, 0, 0, 0, 0}, {0, -Sqrt[3], 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/ 4), -4/3, -(2*Sqrt[2])/3, 0, 0, 0, Sqrt[3], 0, 0, 0, 0, 0}, {0, 0, 2*Sqrt[2/3], -(2*Sqrt[2])/3, 7/3, 0, 0, 0, 0, Sqrt[3], 0, 0, 0, 0}, {Sqrt[3], 0, 0, 0, 0, -4, 0, 2*(-(4*Sqrt[3])^(-1) + Sqrt[3]/4), 0, 0, 2*Sqrt[2/3], 0, 0, 0}, {0, Sqrt[3], 0, 0, 0, 0, -4, 0, 2*(-(4*Sqrt[3])^(-1) + Sqrt[3]/4), 0, 0, 2*Sqrt[2/3], 0, 0}, {0, 0, Sqrt[3], 0, 0, 2*(-(4*Sqrt[3])^(-1) + Sqrt[3]/4), 0, -14/3, 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/4), 2*Sqrt[2/3], (2*Sqrt[2])/3, 0, 0, 0}, {0, 0, 0, Sqrt[3], 0, 0, 2*(-(4*Sqrt[3])^(-1) + Sqrt[3]/4), 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/ 4), -2, -(2*Sqrt[2])/3, 0, (2*Sqrt[2])/3, 0, 0}, {0, 0, 0, 0, Sqrt[3], 0, 0, 2*Sqrt[2/3], -(2*Sqrt[2])/3, -7/3, 0, 0, 2*(1/(3*Sqrt[2]) + (2*Sqrt[2])/3), Sqrt[10/3]}, {0, 0, 0, 0, 0, 2*Sqrt[2/3], 0, (2*Sqrt[2])/3, 0, 0, -16/3, 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/4), 2*Sqrt[2/3], 0}, {0, 0, 0, 0, 0, 0, 2*Sqrt[2/3], 0, (2*Sqrt[2])/3, 0, 2*(-(4*Sqrt[3])^(-1) + (3*Sqrt[3])/ 4), -8/3, -(2*Sqrt[2])/3, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2*(1/(3*Sqrt[2]) + (2*Sqrt[2])/3), 2*Sqrt[2/3], -(2*Sqrt[2])/3, 1/2, 2*(-Sqrt[5/3]/16 - Sqrt[15]/16)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[10/3], 0, 0, 2*(-Sqrt[5/3]/16 - Sqrt[15]/16), 7/2}}; In[33]:= mat === Conjugate[Transpose[mat]] Out[33]= True In[34]:= N[Eigenvalues[mat]] Out[34]= {-9.091215416949623, -7.4185507188738455, -7.4185507188738455, -7.291502622129181, 4.337337307188519, -4., -4., 3.2915026221291814, -3.2461218902388955, -2.387873132949261, -2.387873132949261, 1.8064238518231066, 1.8064238518231066, 0.} In[35]:= Eigenvalues[N[mat]] Out[35]= {-9.091215416949622, -7.4185507188738455, -7.418550718873844, -7.291502622129181, 4.337337307188519, -4.000000000000002, -3.999999999999999, 3.2915026221291814, -3.246121890238896, -2.387873132949261, -2.3878731329492604, 1.8064238518231066, 1.8064238518231046, -2.8189256280805394*^-16} Nasser