A problem in Pi digits as Lattice space filling
- To: mathgroup at smc.vnet.net
- Subject: [mg93793] A problem in Pi digits as Lattice space filling
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Wed, 26 Nov 2008 05:11:39 -0500 (EST)
I need help with programs for 4th, 5th and 6th, etc. levels of lattice filling: The idea that the Pi digits are normal implies that they will fill space on different levels in a lattice type way ( Hilbert/ Peano space fill). Question of space filling: Digit(n)-> how fast till all ten {Digit[n],Digit[n+1]} -> how fast to fill the square lattice {0,0},{0,9},{9,0},{9,9} {Digit[n],Digit[n+1],Digit[n+2]} -> how fast to fill the cubic lattice {0,0,0} to {9,9,9} I've answers for the first three with some really clunky programs. 33,606,8554,... my estimates for the 4th is: 60372 to 71947 ((8554)2/(606*2)and half the log[]line result of 140000.) but it appears to outside what my old Mac can do. I'd also like to graph the first occurrence to see how random the path between the lattice / space fill points is. The square: a = Table[Floor[Mod[N[Pi*10^n, 1000], 10]], {n, 0, 1000}]; Flatten[Table[ If[Length[Delete[Union[Flatten[Table[Table[If[a[[n]] == k && a[[n + \ 1]] - l == 0, {l, k}, {}], {k, 0, 9}, { l, 0, 9}], {n, 1, m}], 2]], 1]] == 100, m, {}], {m, 600, 610}]] {606, 607, 608, 609, 610} Table[Length[Delete[Union[Flatten[Table[Table[If[a[[n]] == k && a[[ n + 1]] - l == 0, {l, k}, {}], {k, 0, 9}, {l, 0, 9}], {n, 1, m}], 2]], 1]], {m, 600, 650}] {99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100} Mathematica Clear[a, b, n] a = Table[Floor[Mod[N[Pi*10^n, 10000], 10]], {n, 0, 10000}]; b = Table[{a[[n]], a[[n + 1]], a[[n + 2]]}, {n, 1, Length[a] - 2}]; Flatten[Table[ If[Length[Union[Table[b[[n]], { n, 1, m}]]] == 1000, m, {}], {m, 8550, 8600}]] {8554, 8555, 8556, 8557, 8558, 8559, 8560, 8561, 8562, 8563, 8564, 8565, 8566, 8567, 8568, 8569, 8570, 8571, 8572, 8573, 8574, 8575, 8576, 8577, 8578, 8579, 8580, 8581, 8582, 8583, 8584, 8585, 8586, 8587, 8588, 8589, 8590, 8591, 8592, 8593, 8594, 8595, 8596, 8597, 8598, 8599, 8600} The proof of the 33 is: Clear[a,b,n] a=Table[Floor[Mod[N[Pi*10^n,10000],10]],{n,0,10000}]; Flatten[Table[If[Length[Union[Table[a[[n]],{n,1, m}]]]==10,m,{}],{m,1,50}]] {33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50} My own 4th level program that won't run on my older machine /older version of Mathematica: Clear[a, b, n] a = Table[Floor[Mod[N[Pi*10^n, 100000], 10]], {n, 0, 100000}]; b = Table[{a[[n]], a[[n + 1]], a[[n + 2]], a[[n + 3]]}, {n, 1, Length[a] - 3}]; Flatten[Table[If[ Length[Union[Table[b[[n]], {n, 1, m}]]] == 10000, m, {}], {m, 1, 50}]] Respectfully, Roger L. Bagula 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html alternative email: rlbagula at sbcglobal.net
- Follow-Ups:
- Re: A problem in Pi digits as Lattice space filling
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: A problem in Pi digits as Lattice space filling