Re: Re: A problem in Pi digits as Lattice space filling
- To: mathgroup at smc.vnet.net
- Subject: [mg93856] Re: [mg93829] Re: A problem in Pi digits as Lattice space filling
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Thu, 27 Nov 2008 05:30:40 -0500 (EST)
- References: <ggj7co$j2i$1@smc.vnet.net> <200811261222.HAA22459@smc.vnet.net>
- Reply-to: drmajorbob at longhorns.com
> first some picky things. The digits in Pi are not normal, but uniformly > distributed I doubt that (uniformity) is actually known. Is it? Bobby On Wed, 26 Nov 2008 06:22:10 -0600, dh <dh at metrohm.com> wrote: > > > Hi Roger, > > first some picky things. The digits in Pi are not normal, but uniformly > > distributed. Further you should have mentioned that you define the > > coordinate tuples by moving only one digit. Then, I can verify the > > filling number for 1 dim. is 33, but for 2 dim. with 606 the duple {6,8} > > does not appear, you need 607 digits. For 3 dim. I need 8556, not 8554. > > Finally, here is a way to do it rather fast. I give the example for 3 > dim: > > n=8556; > > all=Flatten[Table[{i1,i2,i3},{i1,0,9},{i2,0,9},{i3,0,9}],2]; > > d=Union@Partition[RealDigits[\[Pi],10,n][[1]],3,1]; > > Complement[all,d] > > You increase n until the answer is empty: {}. Of course this can be > > automated by wrapping a binary search around the code above, but I let > > this for you. > > hope this helps, Daniel > > > > > > Roger Bagula wrote: > >> I need help with programs for 4th, 5th and 6th, etc. > >> levels of lattice filling: > >> > >> The idea that the Pi digits are normal > >> implies that they will fill space on different levels > >> in a lattice type way ( Hilbert/ Peano space fill). > >> > >> Question of space filling: > >> Digit(n)-> how fast till all ten > >> {Digit[n],Digit[n+1]} -> how fast to fill the square lattice > >> {0,0},{0,9},{9,0},{9,9} > >> {Digit[n],Digit[n+1],Digit[n+2]} -> how fast to fill the cubic lattice > >> {0,0,0} to {9,9,9} > >> I've answers for the first three with some really clunky programs. > >> 33,606,8554,... > >> my estimates for the 4th is: 60372 to 71947 > >> ((8554)2/(606*2)and half the log[]line result of 140000.) > >> but it appears to outside what my old Mac can do. > >> I'd also like to graph the first occurrence to see how random the path > >> between > >> the lattice / space fill points is. > >> > >> The square: > >> a = Table[Floor[Mod[N[Pi*10^n, 1000], 10]], {n, 0, 1000}]; > >> > >> Flatten[Table[ > >> If[Length[Delete[Union[Flatten[Table[Table[If[a[[n]] == k && > >> a[[n + \ > >> 1]] - l == > >> 0, {l, k}, {}], {k, 0, 9}, { > >> l, 0, 9}], {n, 1, m}], 2]], 1]] == 100, m, {}], {m, 600, >> 610}]] > >> {606, 607, 608, 609, 610} > >> Table[Length[Delete[Union[Flatten[Table[Table[If[a[[n]] == k && a[[ > >> n + 1]] - l == 0, {l, k}, {}], {k, 0, 9}, {l, > >> 0, 9}], {n, 1, m}], 2]], 1]], {m, 600, 650}] > >> {99, 99, 99, > >> 99, 99, 99, 100, > >> 100, 100, 100, > >> 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, >> 100, > >> 100, 100, > >> 100, 100, 100, > >> 100, 100, 100, 100, 100, > >> 100, 100, 100, > >> 100, 100, 100, 100, 100, > >> 100, 100, 100, 100, 100, 100, 100, 100, 100} > >> > >> Mathematica > >> Clear[a, b, n] > >> a = Table[Floor[Mod[N[Pi*10^n, 10000], 10]], {n, 0, 10000}]; > >> b = Table[{a[[n]], a[[n + 1]], a[[n + 2]]}, {n, 1, Length[a] - 2}]; > >> Flatten[Table[ > >> If[Length[Union[Table[b[[n]], { > >> n, 1, m}]]] == 1000, m, {}], {m, 8550, 8600}]] > >> {8554, 8555, 8556, > >> 8557, 8558, 8559, 8560, 8561, 8562, 8563, 8564, 8565, 8566, > >> 8567, 8568, 8569, 8570, 8571, 8572, 8573, 8574, 8575, 8576, > >> 8577, 8578, 8579, 8580, 8581, 8582, 8583, 8584, 8585, 8586, > >> 8587, 8588, 8589, > >> 8590, 8591, 8592, 8593, 8594, 8595, 8596, 8597, 8598, 8599, 8600} > >> The proof of the 33 is: > >> Clear[a,b,n] > >> a=Table[Floor[Mod[N[Pi*10^n,10000],10]],{n,0,10000}]; > >> Flatten[Table[If[Length[Union[Table[a[[n]],{n,1, > >> m}]]]==10,m,{}],{m,1,50}]] > >> {33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50} > >> > >> My own 4th level program that won't run on my older machine /older > >> version of Mathematica: > >> Clear[a, b, n] > >> a = Table[Floor[Mod[N[Pi*10^n, 100000], 10]], {n, 0, 100000}]; > >> b = Table[{a[[n]], a[[n + 1]], a[[n + 2]], a[[n + 3]]}, {n, 1, Length[a] > >> - 3}]; > >> Flatten[Table[If[ Length[Union[Table[b[[n]], {n, 1, m}]]] == 10000, m, > >> {}], {m, 1, 50}]] > >> > >> Respectfully, Roger L. Bagula > >> 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 > >> :http://www.geocities.com/rlbagulatftn/Index.html > >> alternative email: rlbagula at sbcglobal.net > >> > > > -- DrMajorBob at longhorns.com
- References:
- Re: A problem in Pi digits as Lattice space filling
- From: dh <dh@metrohm.com>
- Re: A problem in Pi digits as Lattice space filling