Re: integration
- To: mathgroup at smc.vnet.net
- Subject: [mg92582] Re: integration
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Tue, 7 Oct 2008 07:03:43 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <gcchbh$s2c$1@smc.vnet.net>
RG wrote: > I have been trying to simplify(integrate) the following function, but > M6 seems to give a complex answer which i cann't understand.. please > help. > > x[s_]=\!\( > \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(s\)]\(Cos[ > \*FractionBox[\(r\ t\ \((\(-\[Kappa]0\) + \[Kappa]1 + r\ \[Kappa]1)\) > + \((1 + r)\)\ S\ \((\[Kappa]0 - \[Kappa]1)\)\ \((\(-Log[S]\) + Log[S > + r\ t])\)\), > SuperscriptBox[\(r\), \(2\)]]] \[DifferentialD]t\)\) First, notice that if we use the *InputForm* of the above expression, we can easily add assumptions on the parameters of the integral (or we could use *Assuming*), for instance that S, r, and s are real and r != 0 or s > 0. However, it seems that the above integral has no solution if the parameter S is positive. On the other hand, ff we allow S to be negative (or complex) then the integral has a symbolic complex solution. In[49]:= Integrate[ Cos[(r*t*(-\[Kappa]0 + \[Kappa]1 + r*\[Kappa]1) + (1 + r)* S*(\[Kappa]0 - \[Kappa]1)* (-Log[S] + Log[S + r*t]))/r^2], {t, 0, s}, Assumptions -> S > 0] Out[49]= Integrate[ Cos[(r t (-\[Kappa]0 + \[Kappa]1 + r \[Kappa]1) + (1 + r) S (\[Kappa]0 - \[Kappa]1) (-Log[S] + Log[S + r t]))/r^2], {t, 0, s}, Assumptions -> S > 0] In[46]:= Integrate[ Cos[(r*t*(-\[Kappa]0 + \[Kappa]1 + r*\[Kappa]1) + (1 + r)* S*(\[Kappa]0 - \[Kappa]1)* (-Log[S] + Log[S + r*t]))/r^2], {t, 0, s}, Assumptions -> {Element[{S, r, s}, Reals], r != 0, s > 0}] Out[46]= If[r S > 0 || s + S/r <= 0, (1/( 2 (\[Kappa]0 - \[Kappa]1 - r \[Kappa]1))) r S^(-((I (1 + r) S (\[Kappa]0 - \[Kappa]1))/r^2)) (r s + S)^(-(( [... output partially deleted ...] r^2)] Sin[(S \[Kappa]0)/r^2 - (S \[Kappa]1)/r^2 - ( S \[Kappa]1)/r]), Integrate[ Cos[(r t (-\[Kappa]0 + \[Kappa]1 + r \[Kappa]1) + (1 + r) S (\[Kappa]0 - \[Kappa]1) (-Log[S] + Log[S + r t]))/ r^2], {t, 0, s}, Assumptions -> r != 0 && s > 0 && r S <= 0 && r (r s + S) > 0 && S \[Element] Reals]] You can manipulate further the integral thanks to *FullSimplify* and some assumptions on the parameters. Assuming[r S > 0 || s + S/r <= 0, FullSimplify[ 1/(2 (\[Kappa]0 - \[Kappa]1 - r \[Kappa]1)) r S^(-((I (1 + r) S (\[Kappa]0 - \[Kappa]1))/r^2)) (r s + S)^(-(( [... input partially deleted ...] S \[Kappa]1)/r])]] HTH, -- Jean-Marc