Re: integration
- To: mathgroup at smc.vnet.net
- Subject: [mg92861] Re: integration
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet at gmail.com>
- Date: Wed, 15 Oct 2008 06:01:16 -0400 (EDT)
- References: <gcchbh$s2c$1@smc.vnet.net> <48EA5916.2050008@gmail.com>
On Wed, Oct 15, 2008 at 10:34 AM, Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com> wrote: > On Wed, Oct 15, 2008 at 5:19 AM, Gobithaasan <gobithaasan at gmail.com> wrote: >> Greetings... >> Thanks Jean-Marc Gulliet, >> i think M6 would be able to give a simplified answer, which is more >> understandable without the appearance of imaginary numbers in the answer. >> The assumption of the integral should be: >> [1]{k1,k2,r,s,S} are real numbers >> [2] r > -1 >> [3] S > 0 >> [4] 0<= s<= S >> I tried doing with these assumption, but the imaginary part still exists.. >> Is there anyway to ask M6 to give the right assumption for imaginary-free >> answer? Thank you very much Jean... >> >> Gobithaasan > > Please, could you post the expression you used and its result. On my > system, using the above assumptions, Mathematica returns the integral > unevaluated, which is in agreement with what I already noticed when S >> 0: > >>>> [...] However, it seems that the above integral has no solution if the >>>> parameter S is positive. On the other hand, ff we allow S to be negative (or >>>> complex) then the integral has a symbolic complex solution. >>>> >>>> In[49]:= Integrate[ >>>> Cos[(r*t*(-\[Kappa]0 + \[Kappa]1 + r*\[Kappa]1) + (1 + r)* >>>> S*(\[Kappa]0 - \[Kappa]1)* >>>> (-Log[S] + Log[S + r*t]))/r^2], {t, 0, s}, >>>> Assumptions -> S > 0] >>>> >>>> Out[49]= Integrate[ >>>> Cos[(r t (-\[Kappa]0 + \[Kappa]1 + r \[Kappa]1) + (1 + >>>> r) S (\[Kappa]0 - \[Kappa]1) (-Log[S] + Log[S + r t]))/r^2], {t, >>>> 0, s}, Assumptions -> S > 0] In addition, do not forget that a symbolic expression with imaginary parts does not necessarily yields complex values (depending, of course, on the choice of parameter values). For instance, In[10]:= sol = Integrate[ Cos[(r t (-k0 + k1 + r k1) + (1 + r) S (k0 - k1) (-Log[S] + Log[S + r t]))/r^2], {t, 0, s}, Assumptions -> {Im[k0] == 0, Im[k1] == 0, Im[r] == 0, Im[s] == 0, Im[S] == 0, r > 0, s > 0}] Out[10]= If[S > 0 || r s + S <= 0, (1/(2 (k0 - k1 - k1 r))) r^(1 - (2 I k0 S)/r^2 + (2 I k1 S)/r^2 - (2 I k0 S)/r + (2 I k1 S)/r) S^(-((I (k0 - k1) (1 + r) S)/ r^2)) (-((I (-k0 + k1 + k1 r) S)/r^2))^(-((I (k0 - k1) (1 + r) S)/ r^2)) (r s + S)^(-((I (k0 - k1) (1 + r) S)/ r^2)) (I (k0 - k1 (1 + r)) (r s + S))^(-((I (k0 - k1) (1 + r) S)/ r^2)) (-I r^((2 I (k0 - k1) (1 + r) S)/r^2) S^(( I (k0 - k1) (1 + r) S)/r^2) (r s + S)^((I (k0 - k1) (1 + r) S)/ r^2) (I (k0 - k1 (1 + r)) (r s + S))^((I (k0 - k1) (1 + r) S)/ r^2) Cos[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r] Gamma[( I (-I r^2 + (k0 - k1) S + (k0 - k1) r S))/ r^2, -((I (-k0 + k1 + k1 r) S)/r^2)] + I r^((4 I (k0 - k1) (1 + r) S)/ r^2) (-((I (-k0 + k1 + k1 r) S)/r^2))^((I (k0 - k1) (1 + r) S)/ r^2) (r s + S)^((2 I (k0 - k1) (1 + r) S)/r^2) Cos[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r] Gamma[( I (-I r^2 + (k0 - k1) S + (k0 - k1) r S))/ r^2, -((I (-k0 + k1 + k1 r) (r s + S))/r^2)] + I r^((2 I (k0 - k1) (1 + r) S)/r^2) S^((I (k0 - k1) (1 + r) S)/ r^2) (((-k0 + k1 + k1 r)^2 S^2)/r^4)^((I (k0 - k1) (1 + r) S)/ r^2) (r s + S)^((I (k0 - k1) (1 + r) S)/ r^2) (I (k0 - k1 (1 + r)) (r s + S))^((I (k0 - k1) (1 + r) S)/ r^2) Cos[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r] Gamma[-(( I (I r^2 + (k0 - k1) S + (k0 - k1) r S))/r^2), ( I (-k0 + k1 + k1 r) S)/r^2] - I S^((2 I (k0 - k1) (1 + r) S)/ r^2) (-((I (-k0 + k1 + k1 r) S)/r^2))^((I (k0 - k1) (1 + r) S)/ r^2) Abs[-k0 + k1 + k1 r]^((2 I (k0 - k1) (1 + r) S)/r^2) Abs[r s + S]^((2 I (k0 - k1) (1 + r) S)/r^2) Cos[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r] Gamma[-(( I (I r^2 + (k0 - k1) S + (k0 - k1) r S))/r^2), ( I (-k0 + k1 + k1 r) (r s + S))/r^2] + r^((2 I (k0 - k1) (1 + r) S)/r^2) S^((I (k0 - k1) (1 + r) S)/ r^2) (r s + S)^((I (k0 - k1) (1 + r) S)/ r^2) (I (k0 - k1 (1 + r)) (r s + S))^((I (k0 - k1) (1 + r) S)/ r^2) Gamma[(I (-I r^2 + (k0 - k1) S + (k0 - k1) r S))/ r^2, -((I (-k0 + k1 + k1 r) S)/r^2)] Sin[(k0 S)/r^2 - (k1 S)/ r^2 - (k1 S)/r] - r^((4 I (k0 - k1) (1 + r) S)/ r^2) (-((I (-k0 + k1 + k1 r) S)/r^2))^((I (k0 - k1) (1 + r) S)/ r^2) (r s + S)^((2 I (k0 - k1) (1 + r) S)/r^2) Gamma[(I (-I r^2 + (k0 - k1) S + (k0 - k1) r S))/ r^2, -((I (-k0 + k1 + k1 r) (r s + S))/r^2)] Sin[(k0 S)/r^2 - ( k1 S)/r^2 - (k1 S)/r] + r^((2 I (k0 - k1) (1 + r) S)/r^2) S^((I (k0 - k1) (1 + r) S)/ r^2) (((-k0 + k1 + k1 r)^2 S^2)/r^4)^((I (k0 - k1) (1 + r) S)/ r^2) (r s + S)^((I (k0 - k1) (1 + r) S)/ r^2) (I (k0 - k1 (1 + r)) (r s + S))^((I (k0 - k1) (1 + r) S)/ r^2) Gamma[-((I (I r^2 + (k0 - k1) S + (k0 - k1) r S))/r^2), ( I (-k0 + k1 + k1 r) S)/ r^2] Sin[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r] - S^((2 I (k0 - k1) (1 + r) S)/ r^2) (-((I (-k0 + k1 + k1 r) S)/r^2))^((I (k0 - k1) (1 + r) S)/ r^2) Abs[-k0 + k1 + k1 r]^((2 I (k0 - k1) (1 + r) S)/r^2) Abs[r s + S]^((2 I (k0 - k1) (1 + r) S)/r^2) Gamma[-((I (I r^2 + (k0 - k1) S + (k0 - k1) r S))/r^2), ( I (-k0 + k1 + k1 r) (r s + S))/ r^2] Sin[(k0 S)/r^2 - (k1 S)/r^2 - (k1 S)/r]), Integrate[ Cos[(r (-k0 + k1 + k1 r) t + (k0 - k1) (1 + r) S (-Log[S] + Log[S + r t]))/r^2], {t, 0, s}, Assumptions -> k0 \[Element] Reals && k1 \[Element] Reals && S <= 0 && s > 0 && r > -(S/s)]] In[11]:= sol /. {S -> 1, k0 -> 0, k1 -> 1, r -> 1, s -> 1} Out[11]= -(-I)^(4 I) 4^(-1 + 4 I) (-I (-8 I)^(-2 I) Cos[2] Gamma[1 - 2 I, -2 I] + I (-I)^(-2 I) 2^(-6 I) Cos[2] Gamma[1 - 2 I, -4 I] + I (-32 I)^(-2 I) Cos[2] Gamma[1 + 2 I, 2 I] - I (-I)^(-2 I) 2^(-10 I) Cos[2] Gamma[1 + 2 I, 4 I] - (-8 I)^(-2 I) Gamma[1 - 2 I, -2 I] Sin[2] + (-I)^(-2 I) 2^(-6 I) Gamma[1 - 2 I, -4 I] Sin[2] - (-32 I)^(-2 I) Gamma[1 + 2 I, 2 I] Sin[2] + (-I)^(-2 I) 2^(-10 I) Gamma[1 + 2 I, 4 I] Sin[2]) In[12]:= % // N Out[12]= 0.957467+ 0. I In[13]:= % // Chop Out[13]= 0.957467 Regards, -- Jean-Marc