Re: Speeding up a list construction
- To: mathgroup at smc.vnet.net
- Subject: [mg92988] Re: Speeding up a list construction
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 22 Oct 2008 05:37:55 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <gdja5g$ief$1@smc.vnet.net>
carlos at colorado.edu wrote: > In the innermost loop of a complicated module I have a > list of integers > a = {a1,a2,a3, ... an} > The length n can be fairly large, say 10^7. > > I need to quickly generate > asum = {0,a1,a1+a2,a1+a2+a3, ... }; (* n terms *) So you do not add the last component of the vector. > Two obvious solutions are > > n=Length[a]; asum=Table[0,{n}]; > For [i=1,i<=n-1,i++,asum[[i+1]]=asum[[i]]+a[[i]]]; > > asum=Table[Sum[a[[i]],{i,1,k-1}],{k,1,n}]; > > The second is compact but at O(n^2) ops is way too slow. > The first takes O(n) ops but still somewhat slow. Question: > can a O(n)-ops process be coded without the loop? > > Constraint: any solution must work in versions >=4.1. FoldList[Plus, 0, Drop[a, -1]] works from 4.0 onwards, is O(n), and an order of magnitude faster than the fastest above solution. In[8]:= Table[ a = RandomReal[10, {10^n}]; Timing[asum = FoldList[Plus, 0, Drop[a, -1]];][[1]], {n, 2, 7}] Out[8]= {0.000075, 0.000759, 0.004779, 0.048831, 0.488871, 5.07134} In[9]:= Table[ {m, a = RandomReal[10, {10^m}]; Timing[asum = FoldList[Plus, 0, Drop[a, -1]];][[1]], Timing[le = Length[a]; asum = Table[Sum[a[[i]], {i, 1, k - 1}], {k, 1, le}];][[1]], Timing[len = Length[a]; asum = Table[0, {len}]; For[i = 1, i <= len - 1, i++, asum[[i + 1]] = asum[[i]] + a[[i]]];][[1]]}, {m, 2, 4}] Out[9]= {{2, 0.43905, 0.00444, 0.000616}, {3, 0.000795, 0.068962, 0.005712}, {4, 0.004796, 6.87331, 0.056541}} Regards, -- Jean-Marc