[Date Index]
[Thread Index]
[Author Index]
Re: notation using # with exponents and &
*To*: mathgroup at smc.vnet.net
*Subject*: [mg93182] Re: notation using # with exponents and &
*From*: Bill Rowe <readnews at sbcglobal.net>
*Date*: Thu, 30 Oct 2008 02:02:23 -0500 (EST)
On 10/29/08 at 5:49 AM, siegman at stanford.edu (AES) wrote:
>In article <ge6nik$ll4$1 at smc.vnet.net>,
>Bill Rowe <readnews at sbcglobal.net> wrote:
>I guess I get confused, or led astray, by exactly how the words in
>the Wiki definition are to be interpreted. For example
>f = #^x &
>seems to me to be a function with an argument (the "#"), and a --
>what shall we call it? -- a "parameter" (the "x"); and this
>construct returns _different_ values depending on how the value of x
>is pre-set, or changed, before calling it.
>In other words, it does _not_ always return the same value for the
>same argument.
Changing the value of a function parameter changes the function
into another function. That is, surely you are not suggesting
f(x) = 2 x is the same function as g(x) = 4 x even though both g
and f can be seen as instances of h(x) = a x.
if you wish to consider a parametrized function as a single
function for all values to the parameter, then you have to
regard this as a function with two arguments, the parameter and
the variable. Adding a parameter to a pure function doesn't
alter its status as a pure function using either the Wikipedia
definition or the Mathematica definition.
Prev by Date:
**PDE heat equation (inconsisten problem)**
Next by Date:
**Re: plot problem**
Previous by thread:
**Re: notation using # with exponents and &**
Next by thread:
**Re: notation using # with exponents and &**
| |