Re: Assuming odd/even functions
- To: mathgroup at smc.vnet.net
- Subject: [mg98670] Re: [mg98634] Assuming odd/even functions
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 16 Apr 2009 04:12:06 -0400 (EDT)
- Reply-to: hanlonr at cox.net
Use UpValues Clear[f]; f /: f[a_] + f[-a_] = 0 ; f[x] + f[-x] 0 f[-x] + f[x] 0 This isn't robust f[x^2 - 3 x + 2] + f[-x^2 + 3 x - 2] f[-x^2 + 3*x - 2] + f[x^2 - 3*x + 2] However, you can help it along Simplify[ f[x^2 - 3 x + 2] + f[-x^2 + 3 x - 2], x^2 - 3 x + 2 == t] 0 f /: Integrate[f[x_], {x_, -a_, a_}] = 0; Integrate[f[y], {y, -z, z}] 0 However, Integrate[f[y], {y, z, -z}] Integrate[f[y], {y, z, -z}] Add another UpValue f /: Integrate[f[x_], {x_, a_, -a_}] = 0; Integrate[f[y], {y, z, -z}] 0 Again, not robust Integrate[f[y], {y, x^2 - 3, -x^2 + 3}] Integrate[f[y], {y, x^2 - 3, 3 - x^2}] But as before Simplify[ Integrate[f[y], {y, x^2 - 3, -x^2 + 3}], x^2 - 3 == t] 0 Bob Hanlon ---- "Martin Sch=C3=B6necker" <ms_usenet at gmx.de> wrote: ============= How can we give Mathematica the information of a function being odd or even= , and have it applied automatically or in a Simplify[]? Such that, if e.g. f[y] is odd, the sum f(a)+f(-a) yields zero, the integral Integrate[f[y], {y, -a, a}] vanishes? --Martin