Re: Re: FindRoot
- To: mathgroup at smc.vnet.net
- Subject: [mg98753] Re: [mg98744] Re: [mg98693] FindRoot
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Sat, 18 Apr 2009 03:36:42 -0400 (EDT)
- References: <200904170830.EAA23546@smc.vnet.net>
- Reply-to: drmajorbob at bigfoot.com
To see real roots that APPEAR real (when a is real), I'd use something like eqn = x^3 - 4 a^2 x - 2 a^3 == 0; r = Simplify[ComplexExpand[x /. Solve[eqn, x]], a > 0] {(4 a Cos[1/3 ArcTan[Sqrt[37/3]/3]])/Sqrt[3], -(2/3) a (Sqrt[3] Cos[1/3 ArcTan[Sqrt[37/3]/3]] + 3 Sin[1/3 ArcTan[Sqrt[37/3]/3]]), a (-((2 Cos[1/3 ArcTan[Sqrt[37/3]/3]])/Sqrt[3]) + 2 Sin[1/3 ArcTan[Sqrt[37/3]/3]])} Plot[r, {a, -5, 5}] or equivalently: eqn2 = eqn /. x -> a y; r = y /. ComplexExpand@Solve[eqn2, y] {(4 Cos[1/3 ArcTan[Sqrt[37/3]/3]])/Sqrt[3], -(( 2 Cos[1/3 ArcTan[Sqrt[37/3]/3]])/Sqrt[3]) + 2 Sin[1/3 ArcTan[Sqrt[37/3]/3]], -(( 2 Cos[1/3 ArcTan[Sqrt[37/3]/3]])/Sqrt[3]) - 2 Sin[1/3 ArcTan[Sqrt[37/3]/3]]} Plot[a r, {a, -5, 5}] Bobby On Fri, 17 Apr 2009 03:30:30 -0500, Bob Hanlon <hanlonr at cox.net> wrote: > eqn = x^3 - 4 a^2 x - 2 a^3 == 0; > > r = Simplify[x /. Solve[eqn, x], a > 0] > > {((4*3^(1/3) + (9 + I*Sqrt[111])^ > (2/3))*a)/(3^(2/3)* > (9 + I*Sqrt[111])^(1/3)), > (I*(-12 + 4*I*Sqrt[3] + > I*3^(1/6)*(9 + I*Sqrt[111])^ > (2/3) + (27 + 3*I*Sqrt[111])^ > (2/3))*a)/(2*3^(5/6)* > (9 + I*Sqrt[111])^(1/3)), > ((12*I - 4*Sqrt[3] - > 3^(1/6)*(9 + I*Sqrt[111])^ > (2/3) - > I*(27 + 3*I*Sqrt[111])^(2/3))* > a)/(2*3^(5/6)*(9 + I*Sqrt[111])^ > (1/3))} > > Plot[r, {a, 0, 5}] > > > Bob Hanlon > > ---- Miguel <misvrne at gmail.com> wrote: > > ============= > Hi all, > How can I to find the reals roots of a cubic equation in simbolic > form: For example, > > Find the roots of > x^3-4a^2x-2a^3==0 > > where "a" is real and a>0. > > Thanks > > > -- DrMajorBob at bigfoot.com
- References:
- Re: FindRoot
- From: Bob Hanlon <hanlonr@cox.net>
- Re: FindRoot