Re: Manipulate + ListPlot3D +...
- To: mathgroup at smc.vnet.net
- Subject: [mg99246] Re: Manipulate + ListPlot3D +...
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Thu, 30 Apr 2009 06:32:56 -0400 (EDT)
- References: <gt90ng$l49$1@smc.vnet.net>
Hi Ossamma, try this: CreateDocument[ { Manipulate[ Show[ { ListPlot3D[{LuF3Csa[1.9745, \[Alpha]], Table[{x, 0, z}, {x, -1, 2}, {z, -1, 0}]}, PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0}, PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0}, MeshStyle -> Yellow, Axes -> True, Boxed -> True, PlotRangePadding -> None, PlotRange -> All ], Graphics3D[{PointSize[0.05], Point[LuF3Csa[1.9745, \[Alpha]]]}] } ], {\[Alpha], 110 (Pi/180), 2 Pi/3}, Control[{\[Alpha], {105 (Pi/180), 110 (Pi/180), 115 (Pi/180), 2 Pi/3}}] ], Button["Close", NotebookClose[]] }, WindowSize -> {700, 700} ] Cheers -- Sjoerd On Apr 29, 9:48 am, Ossama Kullie <okul... at chimie.u-strasbg.fr> wrote: > Dear Mathematica user, > > I have the following graphics, > > --------------------------------------------cut here > > R =.; \[Alpha] =.; > LuF3Csa[R_, \[Alpha]_] := {{0 , 0, 0}, {(2*R*Sin[\[Alpha]/2])/Sqrt[3], > 0, -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/ > Sqrt[3])}, {-(R*Sin[\[Alpha]/2])/Sqrt[3], > R*Sin[\[Alpha]/2], -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/ > Sqrt[3])}, {-(R*Sin[\[Alpha]/2])/Sqrt[3], -R* > Sin[\[Alpha]/2], -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/Sqrt[3])}} > > CreateDocument[{Manipulate[ > ListPlot3D[{LuF3Csa[1.9745, \[Alpha]], > Table[{x, 0, z}, {x, -1, 2}, {z, -1, 0}]}, > PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0}, > PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0}, > MeshStyle -> Yellow, Axes -> True, Boxed -> True, > PlotRangePadding -> None, PlotRange -> All], {\[Alpha], > 110 (Pi/180), 2 Pi/3}, > Control[{\[Alpha], {105 (Pi/180), 110 (Pi/180), 115 (Pi/180), > 2 Pi/3}}]], Button["Close", NotebookClose[]]}, > WindowSize -> {700, 700}] > > -------------------------------------------------------------- > > It is the molecule LuF3 with a pyramid shape geometry. I want to > include the atoms, point-like at the four top points of the pyramids, > which can move with the shape pf the molecule when the structure of > the molecules changes with manipulate. > Can you help me please? > > Best Regards, > O. Kullie