Re: Skellam distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg102205] Re: [mg102152] Skellam distribution
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Sat, 1 Aug 2009 04:00:33 -0400 (EDT)
- References: <200907310952.FAA19191@smc.vnet.net>
- Reply-to: drmajorbob at bigfoot.com
Here's the PDF from Mathematica, f1 = PDF[d1 = PoissonDistribution[m1]]; f2 = PDF[d2 = PoissonDistribution[m2]]; pdf[k_] = Sum[f1[k + n] f2[n], {n, -k, Infinity}] // PowerExpand E^(-m1 - m2) m1^(k/2) m2^(-k/2) BesselI[-k, 2 Sqrt[m1] Sqrt[m2]] verified at http://en.wikipedia.org/wiki/Skellam_distribution and here's the CDF: messy[k_] = Sum[pdf[n],{n,0,k}] E^(-m1-m2) (-((Sqrt[m2] BesselI[1,2 Sqrt[m1] Sqrt[m2]])/Sqrt[m1])+DifferenceRoot[Function[{\[FormalY],\[FormalN]},{m1 \[FormalY][\[FormalN]]+(-1-\[FormalN]-m1) \[FormalY][1+\[FormalN]]+(1+\[FormalN]-m2) \[FormalY][2+\[FormalN]]+m2 \[FormalY][3+\[FormalN]]==0,\[FormalY][-1]==0,\[FormalY][0]==(Sqrt[m2] BesselI[1,2 Sqrt[m1] Sqrt[m2]])/Sqrt[m1],\[FormalY][1]==BesselI[0,2 Sqrt[m1] Sqrt[m2]]+(Sqrt[m2] BesselI[1,2 Sqrt[m1] Sqrt[m2]])/Sqrt[m1]}]][1+k]) That doesn't look nice at all, so I'd probably use cdf[-1] = 0; cdf[k_] := cdf[k] = cdf[k - 1] + pdf[k] messy[10] - cdf[10] // FullSimplify 0 Bobby On Fri, 31 Jul 2009 04:52:36 -0500, Peter Breitfeld <phbrf at t-online.de> wrote: > > Is there an implementation of the Skellam distribution? If not, how > would you implement a CDF for this distribution? > -- DrMajorBob at bigfoot.com